Digital library

  • Seaweeds are presently explored as an alternative source to meet the future protein demand from a growing world population with an increasing welfare level. Present seaweed research largely focuses on agri-technical and economic aspects. This paper explores directions for optimizing the cultivation, harvesting, transport and drying of seaweed from an environmental point of view. An environmental life cycle assessment (LCA) and detailed sensitivity analysis was made for two different system designs. One system design is featuring one layer of cultivation strips (four longlines side by side) interspaced with access corridors. The other system design is featuring a doubling of cultivation strips by dual layers in the water column. Impact profiles and sensitivity analysis showed that the most important impacts came from drying the harvested seaweed, and from the pro- duction of the chromium steel chains and polypropylene rope in the infrastructure. This indicates that caution should be used when designing cultivation systems featuring such materials and processes. Furthermore, the high-density productivity of the dual layer system decreases absolute environmental impacts and so found to be a little more environmentally friendly from a life cycle perspective.

    Author(s): Roel van Oirschot , Jean-Baptiste E. Thomas, Fredrik Gröndahl, Karen P.J. Fortuin, Willem Brandenburg, José Potting
  • Carbohydrate-rich and fast-growing seaweeds such as the S. japonica species are increasingly becoming the 3rd generation biomass of choice. Environmentally friendly as well as economically sound processes for biofuel production are essential if the benefits of these novel marine feedstocks are to be harnessed. This study features an experiment-based process design that combines a fluidized bed fast pyrolysis reactor system, non-intensive pretreatment, and a Bryton power cycle in an, energy-wise, nearly self-sustainable system, considerably reducing the utilization of fossil fuel-derived utilities. Complex liquid products of pyrolysis and catalytic upgrading were modeled using a specialized software ensuring strict adherence to experimental data, hence retaining a highly realistic simulation. Results of comprehensive techno-economic and market uncertainty assessments have shown a capital investment of 170 mil. USD, and a minimum selling price range of 1.5341.852 USD/L. When compared to traditional oil and gas extraction and refining processes, the designed process yielded a 12.8-fold reduction of the total CO2 emitted, indicating a superior process in terms of environmental sustainability.

    Author(s): Boris Brigljević, Jay Liu, Hankwon Lim
  • Utilisable crude protein (uCP), methane (CH4) production and other fermentation parameters were analysed in vitro for a diet in which grass silage was replaced by different levels of seaweed protein fractions prepared from three seaweed species: Saccharina latissima, Alaria esculenta and Palmaria palmata. Ten fractions from these three species in which the protein content had been increased and the salt content reduced by simple processing were tested, with inclusion levels in the diet based on the nitrogen content of the fractions. Following an extraction procedure, four fractions from Saccharina latissima, three from Alaria esculenta and one from Palmaria palmata, were incrementally included in the diet by replacing high quality silage with approximately 0, 0.15, 0.30 and 0.45 g/g DM, while two high-protein fractions of Palmaria palmata were tested at replacement levels of 0, 0.075, 0.15 and 0.225 g/g DM. To estimate fermentation parameters, 500 mg of each diet were incubated in bottles with 60 mL buffered rumen fluid. Estimated uCP increased linearly with increasing replacement rate of grass silage with seaweed protein fractions (from 158 g/kg DM to 206 g/kg DM on average for all fractions). Increasing protein fraction from the brown seaweed Saccharina latissima in the diet significantly increased true organic matter digestibility (OMD) (from on average 0.786 to 0.821). Organic matter digestibility decreased with increasing level of Alaria esculenta fractions (from on average 0.785 to 0.733), which also gave a linear decrease in CH4 production (from on average 45.3 to 38.5 mL/g organic matter). As a result of decreased CH4 production and OMD, total volatile fatty acid concentration decreased with increasing level of Alaria esculenta fractions (from on average 69.5 to 63.0 mmol/L). Thus, positive and species-specific effects of seaweed on estimated uCP and fermentation parameters were observed in vitro when protein fractions remaining after an extraction procedure on seaweed partly replaced grass silage in the feed ration.

    Author(s): Lorenna Machado, Nigel Tomkins, Marie Magnusson, David J. Midgley, Rocky de Nys, Carly P. Rosewarne
  • Seaweed beds can serve as a significant carbon dioxide (CO2) sink while also satisfying global needs for food, fodder, fuel, and pharmaceutical products. The goal of our Korean Project has been to develop new baseline and monitoring methodologies for mitigation and adaptation within the context of climate change. Using innovative research approaches, we have established the Coastal CO2 Removal Belt (CCRB), which comprises both natural and man-made plant communities in the coastal region of southern Korea. Implemented on various spatial– temporal scales, this scheme promotes the removal of CO2 via marine forests. For example, when populated with the perennial brown alga Ecklonia, a pilot CCRB farm can draw down 10 t of CO2 per ha per year. This success is manifested by an increment in biomass accumulations and a decrease in the amount of dissolved inorganic carbon in the water column.

    Author(s): Kwang-Seok Park, Jong Gyu Kim, Jong Ahm Shin, Jin Ae Lee, Jung Hyun Oak, Ik Kyo Chung
  • Adverse detrimental impacts of environmental pollution over the health regimen of people has driven a shift in lifestyle towards cleaner and natural resources, especially in the aspects of food production and consumption. Microalgae are considered a rich source of high value metabolites to be utilized as plant growth biostimulants. These organisms however, are underrated compared to other microbial counterparts, due to inappropriate knowledge on the technical, enviro-economical constrains leading to low market credibility. Thus, to avert these issues, the present review comprehensively discusses the biostimulatory potential of microalgae interactively combined with circular bio-economy perspectives. The biochemical content and intracellular action mechanism of microalgal biostimulants were described. Furthermore, detailed country-wise market trends along with the description of the existing regulatory policies are included. Enviro-techno-economic challenges are discussed, and the consensus need for shift to biorefinery and circular bio-economy concept are emphasized to achieve sustainable impacts during the commercialization of microalgal biostimulants.

    Author(s): Bunushree Behera, Kolli Venkata Supraja, Balasubramanian Paramasivan
  • Fucus evanescens is a brown alga of arctic origin that has invaded European coasts. The epiphytic community of F. evanescens in southern Sweden was compared with that of the native Fucus vesiculosus, to examine to what extent an invading seaweed can modify local biodiversity. F. evanescens was much less fouled than F. vesiculosus, supporting both less biomass and fewer species of epiphytes. Multivariate analysis of the most common epiphyte taxa showed that the epiphytic community composition of F. evanescens was not entirely separated from that of F. vesiculosus, but host species contributed significantly to explain the variation in community composition. The biomass of free-living invertebrates was also lower on F. evanescens, although the pattern differed between taxonomic groups. While the biomass of amphipods was lower on F. evanescens, there was no significant difference in biomass of isopods or gastropods between the Fucus species. The good correlation between biomass of epiphytes and free-living animals suggests that the epiphytes play an important role in providing a suitable habitat for many species of free-living epifauna. The study shows that the invasion of F. evanescens affects the environmental conditions for many species associated with the Fucus community but that the direct effect on biodiversity is probably low.

    Author(s): Sofia A. Wikstrom, Lena Kautsky
  • Bacterial biofilms are increasingly seen as important for the successful settlement of marine invertebrate larvae. Here we tested the effects of biofilms on settlement of the sea urchin Heliocidaris erythrogramma. Larvae settled on many surfaces including various algal species, rocks, sand and shells. Settlement was reduced by autoclaving rocks and algae, and by treatment of algae with antibiotics. These results, and molecular and culture-based analyses, suggested that the bacterial community on plants was important for settlement. To test this, approximately 250 strains of bacteria were isolated from coralline algae, and larvae were exposed to single-strain biofilms. Many induced rates of settlement comparable to coralline algae. The genus Pseudoalteromonas dominated these highly inductive strains, with representatives from Vibrio, Shewanella, Photobacterium and Pseudomonas also responsible for a high settlement response. The settlement response to different bacteria was species specific, as low inducers were also dominated by species in the genera Pseudoalteromonas and Vibrio. We also, for the first time, assessed settlement of larvae in response to characterised, monospecific biofilms in the field. Larvae metamorphosed in higher numbers on an inducing biofilm, Pseudoalteromonas luteoviolacea, than on either a low-inducing biofilm, Pseudoalteromonas rubra, or an unfilmed control. We conclude that the bacterial community on the surface of coralline algae is important as a settlement cue for H. erythrogramma larvae. This study is also an example of the emerging integration of molecular microbiology and more traditional marine eukaryote ecology.

    Author(s): Megan J. Huggett, Jane E. Williamson , Rocky de Nys, Staffan Kjelleberg, Peter D. Steinberg
  • Increasing crop productivity for food security is a challenging task without compromising the environmental integrity. In this scenario, seaweed based plant biostimulants are one of the potential sources for sustainably improving crop productivity and mitigating climate change. However, in order to quantitatively express the environmental benefits it becomes imperative to estimate the impacts resulting from their production. Thus the present study was undertaken to determine the various impacts across nineteen environmental categories that resulted from production of 1000 L of Gracilaria seaweed extract-a potent plant biostimulant by using life cycle assessment methodology. The environmental impacts were apportioned between seaweed extract and downstream product (agar) on the basis of price allocation. Among the three different steps involved in production of the extract, the processing module contributed to higher proportion of impacts across different evaluated environmental impact categories and it ranged from 65 to 99% of the total impacts. Electricity requirement, shed and blowmoulding sub-processess within the processing step contributed to bulk of the evaluated environmental impact categories. Plastics used in packaging of the extract as well as those used in cultivation module contributed to more than 50% of impacts across 8 out of the 19 evaluated environmental impact categories. Thus, in order to render the product even more sustainable we would recommend the use of biodegradable products for making the raft as well as for packaging. In addition, marketing of the extract as a concentrate would further lower the environmental burden associated with the transport and packaging, thus rendering the SWE even more sustainable.

    Author(s): Arup Ghosh, K. Eswaran, K.G. Vijay Anand
  • We have observed that marine macroalgae produce sound during photosynthesis. The resultant soundscapes correlate with benthic macroalgal cover across shallow Hawaiian coral reefs during the day, despite the presence of other biological noise. Likely ubiquitous but previously overlooked, this source of ambient biological noise in the coastal ocean is driven by local supersaturation of oxygen near the surface of macroalgal filaments, and the resultant formation and release of oxygen-containing bubbles into the water column. During release, relaxation of the bubble to a spherical shape creates a monopole sound source that ‘rings’ at the Minnaert frequency. Many such bubbles create a large, distributed sound source over the sea floor. Reef soundscapes contain vast quantities of biological informa- tion, making passive acoustic ecosystem evaluation a tantalizing prospect if the sources are known. Our observations introduce the possibility of a general, volumetrically integrative, noninvasive, rapid and remote technique for evaluating algal abundance and rates of pri- mary productivity in littoral aquatic communities. Increased algal cover is one of the stron- gest indicators for coral reef ecosystem stress. Visually determining variations in algal abundance is a time-consuming and expensive process. This technique could therefore pro- vide a valuable tool for ecosystem management but also for industrial monitoring of primary production, such as in algae-based biofuel synthesis.

    Author(s): Simon E. Freeman, Lauren A. Freeman, Giacomo Giorli, Andreas F. Haas
  • A CHINESE company has invested in Australian research to turn seaweed into high-value products includingcosmetics, agricultural chemicals, food and medicine.

    Author(s):

Pages