Evaluation of Algae Co-Products as a Potential Alternative Ingredient for Cattle, Fish and Shrimp Feeds

Biofuels Co-Products Workshop Waimanalo, Hawaii December 1-2, 2011

TEXAS A&M UNIVERSITY

Addison L. Lawrence¹, Tryon A. Wickersham², Delbert M. Gatlin III³, Donovan Patterson³, Susmita Patnaik¹, Merritt Drewery²

¹Texas AgriLife Research Mariculture Laboratory and Departments of ²Animal Science and ³Wildlife and Fisheries Sciences, Texas A&M University, Texas A&M System

From Texas A&M University

HOWDY!!!!!!

College of Agriculture and Life Sciences

Department of Animal Science

Alternative Feed Ingredient Program

- Grain ingredients (e.g. dehulled defatted soybean meal, canola, lupin, pea meals, etc.)
- Grain concentrates (e.g. soybean concentrate, wheat gluten, corn gluten, canola, etc.)
- Animal meals (e.g. poultry by-products, blood meal, meat and bone meal)
- Dried distiller grain with solubles (DDGS) byproduct from brewery and biofuel industries
- Biofloc from aquaculture waste made by SBR's and MBR's
- Seafood processing by-products co-extruded with grain ingredients (e.g. soybean meal)
- Algae co-products (defatted algae)

Questions Asked By A&M??????

- What ingredients should be replaced? – criteria: volume and cost – chose soybean, fish, cottonseed, and DDGS meals
- What species should be evaluated? criteria: volume and cost chose fish, shrimp and cattle

Fish and Soybean Meals Prices

Algae Co-Product (defatted algae) Cattle Feed

- Economic value
- High nutritional value
- DDGS replacement
- Unknown growth factors

Algae Co-Product (defatted algae) Fish and Shrimp Feeds

- Economic value
- High nutritional value
- Fish meal replacement
- Fish oil replacement
- Soybean meal replacement
- Unknown growth factors

Fish Meal for Shrimp and Fish

• ADVANTAGES

Source of dietary protein, minerals, highly unsaturated fatty acids, chemoattractants, and unknown growth factors.

•**DISADVANTAGES**

Expensive with supply not sustainable.

DDGS Meal for Cattle

•ADVANTAGES

Source of dietary protein, minerals, vitamins, and unknown growth factors.

•DISADVANTAGES

High sulfur levels, variable, and difficult to handle.

Objective

TO EVALUATE DEFATTED ALGAE AS A MEAL FOR CATTLE AND MARINE FISH AND SHRIMP DIETS

Texas A&M System

Algae Information

- Species of Algae
- Production Method
- Oil ExtractionMethod
- Chain of Custody

Proximate composition of Whole Algae and Defatted Algae (diatom)

Proximate analysis of algae as diet ingredient						
Nutriont (og ig boggg)	Whole	Defatted				
Nutrient (as is bases)	Algae	Algae				
Moisture (%)	7.81	3.62				
Dry Matter (%)	92.2	96.4				
Crude Protein (%)*	16.2	11.9				
Crude Fat (%)*	10.7	0.59				
Acid Detergent Fiber (%)*	<0.5	<0.5				
Ash (%)*	36.9	49.1				

^{*} Values as % on "as is' basis"

Base (control) Diet (BD) and Standard Semi-Purified Research Diet (SSPRD) Ingredient Levels (as-fed basis) for Shrimp

Ingredient (%)	SSPRD	BD	Ingredient (%)	SSPRD	BD
Alginate	2.00	2.00	Oil, Soybean	0.60	2.70
Ca Carbonate	2.50	2.60	Phospholipid,97%	4.00	2.40
Cellulose	3.20	2.20	CaHPO ₄	4.20	2.30
Cholesterol	0.20	0.20	NaHexaMetaPO ₄	1.00	1.00
CuSO4*H2O	0.00	0.03	Poultry By-Product	0.00	5.00
Diatomaceous Earth	3.80	1.40	PM Min/Vit LMCI	0.25	0.25
Fish, Menhaden	8.00	15.0	PM Min/Vit LMCI	0.21	0.21
KCl	1.90	2.00	Soybean-90%	5.70	19.70
L-Methionine	0.00	0.10	Squid, Muscle	30.0	6.00
MgO	1.60	1.40	Vit C, Staple 35%	0.04	0.04
NaCl	0.70	0.20	Wheat Starch	29.5	32.9
Oil, Fish Menhaden	0.60	0.40			

Whole Algae, Defatted Algae (Algae Co-Product), Fish Meal (menhaden) and Isolated Soy 90% Protein Meal Levels in Base (control) and Experimental Diets (as-fed basis) for Shrimp

	Base	11-0	11-0	11-0	11-0	11-0	11-0	11-0	11-0
Ingredient (%)	Diet	901a	901b	903a	903b	905a	905b	907a	907b
Algae, Whole		6.67	13.3	6.51	13.2	0.00	0.00	0.00	0.00
Algae, Defatted		0.00	0.00	0.00	0.00	6.67	13.3	6.67	13.3
Fish, Menhaden	15.0	15.0	15.0	13.3	11.5	15.0	15.0	13.7	12.3
Soybean-90%	19.7	18.5	17.3	19.7	19.7	18.8	17.8	19.7	19.7

Base and Experimental Diet Ingredients for Shrimp which were constant (as-fed bases)

Ingredient	Level (%)	Ingredient	Level (%)
Alginate	2.00	PM Min/Vit LMCI	0.25
Cholesterol	0.20	PM Min/Vit LMCI	0.21
CuSO4*H2O	0.03	Squid, Muscle	6.00
L-methionine	0.10	Lecithin, 97%	2.40
NaHexaMetaPO4	1.00	Vit C, Staple 35%	0.04
Poultry By-Prdct	5.00		

Base and Experimental Diet Ingredients for Shrimp which were varied to maintain some dietary nutrients constant (as-fed basis)

	Base	11-0	11-0	11-0	11-0	11-0	11-0	11-0	11-0
Ingredient (%)	Diet	901a	901b	903a	903b	905a	905b	907a	907b
Ca Carbonate	2.60	1.87	1,13	2.08	1,55	1.73	0.87	1.73	0.87
Cellulose	2,20	2.17	2.13	2.17	2.13	2.17	2.13	2.17	2.13
Diatomaceous Earth	1.40	0.93	0.47	0.94	0.48	0.93	0.47	0.93	0.47
KCl	2.00	1.63	1,27	1.64	1.28	1.70	1.40	1.73	1.47
MgO	1.40	1.37	1.33	1.37	1.33	1.33	1.27	1.33	1.27
NaCl	0.20	0.13	0.07	0.13	0.07	0.13	0.07	0.13	0.07
Oil, Fish Menhaden	0.40	0.40	0.40	0.56	0.73	0.40	0.40	0.53	0.67
Oil, Soybean	2.70	1.80	0.90	1.82	0.92	2.40	2.10	2.37	2.03
CaHPO4	2.30	2.17	2.03	2.17	2.04	1.97	1,63	2.30	2.30
Wheat Starch	32.9	30.1	27.4	30.4	27.8	29,6	26.3	29,5	26.1

Nutrient Profiles of Shrimp Diets (analyzed values)

% Nutrients	StRef	Base	11-	11-	11-	11-	11-	11-	11-	11-
(as fed bases)	Diet	Diet	0901a	0901b	0903a	0903b	0905a	0905b	0907a	0907b
Moisture	8.49	8,45	8.65	9.68	8.86	9.03	8.09	8.65	8,35	9.67
Crude Protein	38.7	37.2	36.1	35.6	35.6	36.8	36.9	36.3	36.2	35.2
Crude Fat	6.19	7.64	6.78	8.52	8.15	7.18	7.27	7.60	6.71	5.96
Fiber	2,26	3.25	2.46	3.84	4.24	4.60	4.04	4.13	4.96	4.97
Ash	17.6	16.2	17.5	18.4	17.1	17.4	18.1	18.7	17.9	19.9
Sulfur		0.39	0.42	0.44	0.40	0.42	0.41	0.44	0.41	0.45
Phosphorus		2.06	2.06	1.99	1.84	1.82	1.85	1.76	1.87	1.88
Potassium		1.34	1.25	1.09	1.14	1.03	1.16	1.09	1.19	1.13
Magnesium		1,52	1.26	1.69	1.51	1.36	1.60	1.32	1.39	1.54
Calcium		3.36	3.07	2.63	2.73	2.44	3.41	3.58	3.44	3.74
Sodium		0.95	1.04	1.12	1.00	1.08	1.06	1.20	1.05	1.24
Iron (ppm)		553	586	783	962	616	590	414	481	468
Manganese (ppm)		54.0	54.0	68.0	58.0	59.0	56.0	50.0	51.0	56.0
Copper (ppm)		120	116	126	111	128	122	118	120	132
Zinc (ppm)		155	157	156.	148	151	144	144	146	148

Methods for Shrimp Experiment

- 6 shrimp tank (bottom area 0.1m²) or 60/m² of similar size (0.588 g) were stocked in a tank.
- 8 replicates each dietary treatment.

Methods for Shrimp Experiment

- Temperature: $30 \pm 2^{\circ}C$ Salinity: 26-36 ppt
- Feed Rate: Above satiation, 15 times daily
- Photoperiod: 12h day and 12h night
- Dissolved oxygen: 5.20 ± 0.2 mg/L
- Water exchange rate (new water): 144%/day
- Daily removal of feces and dead shrimp
- Weekly monitoring of ammonia, nitrite, nitrate, pH.
- Daily monitoring of dissolved oxygen, temperature and salinity

Methods for Shrimp Experiment

- Feed prepared by cold extrusion.
- Temperature controlled, recirculating system
- Water exchange: regulated by flow restrictor inserted in the inflow fitting.
- All diets were fed in excess of consumption, fifteen times daily using automatic feeders
- Uneaten feed and feces removed daily from tanks
- Critical water quality indicators were maintained to be not limiting shrimp growth
- Trial length: 36 days

Statistical Analyses for Shrimp Exp.

- Mean final weight, survival, growth, and harvest biomass data were analyzed among treatments (α = 0.05) using SPSS 15.0 statistical software (SPSS Inc. Chicago, II)
- One-way ANOVA used to determine significant differences among treatments

Survival(%), final weight(g), and growth(g/wk) values for *L. vannamei* fed diets using whole and defatted algae as feed ingredients.

AW: Algae whole; AD: Algae defatted; FM: Fish meal; SB: Soybean meal

AW	AD	FM	SB	Survival	Final Wt.	Growth
0.00	0.00	15.00	5.7	100,±0.0	12.7±0.6	2.34±0.10
0.00	0.00	15.00	19.7	96.7±7.4	10.5±0.4	1.92±0.11
6.67	0.00	15.00	18.5	94.4±8.6	10.3±0.6	1.87±0.12
13.33	0.00	15.00	17.3	91.7±9.1	10.1±0.5	1.85±0.11
6.51	0.00	13.00	19.7	97.2±6.8	10.0±0.4	1.81±0.08
13.17	0.00	11.57	19.7	94.4±8.6	10.0±0.5	1.82±0.09
0.00	6.67	15.00	18.8	97.2±6.8	9.3±0.6	1.69±0.12
0.00	13.33	15.00	17.8	83.3 6.8	9.9±0.7	1.80±0.14
0.00	6.67	13.67	19.7	97.2±6.8	9.8±0.9	1.78±0.18
0.00	13.33	12.30	19.7	83.3 6.8	9.7±0.3	1.77±0.05

For the conditions of this experiment:

CONCLUSIONS

- SRD: Maximum growth (2.34 g/wk), 100% survival
- Water quality desirable.
- Shrimp survival ranged from 83.3% to 100% at the end of 36 day trial. No significant difference in survival between any diets
- Shrimp final weight ranged from 8.3 to 10.5 g at termination with no significant difference between the algae diets and the base diet without any algae.
- Shrimp growth ranged from 1.69 to 1.92 g at termination with no significant difference between the algae diets and the base diet without any algae.

For the conditions of this experiment:

CONCLUSIONS

- Biomass ranged from 163.5 g/m² (660.4 g/m³) to 182.9 g/m² (739.0 g/m³) with no significant difference between algae diets and base diet without any algae.
- •6.67% whole algae and 13.3% defatted algae can replace fish meal and isolated soy protein on a protein bases with no significant reduction in growth or survival.
- These data indicate that whole or defatted algae can be used as ingredients in shrimp diets as replacements of fish meal, and isolated soybean meal in shrimp diets.

Reference Diet for Red Drum

(formulated to contain 40% crude protein and 10% lipid)

Ingredient	g/100 g
Menhaden fishmeal	27.8
Soybean Protein Concentrate	27.8
Dextrin	9.0
Menhaden oil	7.0
Vitamin premix	3.0
Mineral premix	3.0
CMC	2.0
Celufil	20.4
Σ	100.0

Replacement of 5% Dietary Protein with Lipid-Extracted Algae (LEA) and Non-LEA

(formulated to contain 40% crude protein and 10% lipid)

	5% LEA	5% Non-LEA
Ingredient	g/100 g	g/100 g
Menhaden fishmeal	26.4	26.4
Soybean Protein Concentrate	26.4	26.4
Dextrin	9.0	9.0
Menhaden oil	6.5	5.3
Vitamin premix	3.0	3.0
Mineral premix	3.0	3.0
CMC	2.0	2.0
Algae Meal (Defatted or Non- defatted)	15.0	10.3
Celite (diatomaceous earth)	8.0	11.4
Celufil	0.7	3.2
Σ	100.0	100.0

LEA and non-LEA replacement 10% of dietary protein

(diets formulated to contain 40% crude protein and 10% lipid)

Ingredient	Reference – high ash	10% LEA	10% Non- LEA
	g/100 g	g/100 g	g/100 g
Menhaden fishmeal	27.80	25.0	25.0
Soybean protein concentrate	27.80	25.0	25.0
Dextrin	9.00	6.1	9.0
Menhaden oil	7.00	5.9	3.4
Vitamin premix	3.00	3.0	3.0
Mineral premix	3.00	3.0	3.0
Carboxymethyl cellulose	2.00	2.0	2.0
Algae Meal (LEA or Non- LEA)		30.0	20.6
Celite (diatomaceous earth)	16.0	0.0	6.8
Celufil	4.40	0.0	2.2
Σ	100.0	100.0	100.0

Feeding Trials at the Aquacultural Research and Teaching Facility

- Experimental culture system
 - ➤ 110-L aquaria
 - > Temperature 27 ± 1 C
 - Dissolved oxygen near air saturation
 - > 12:12 h light:dark cycle
- Red drum (Sciaenops ocellatus)
 - ▶ 13 g initial weight
 - 7-week feeding trial

Biofuels Co-Products Workshop, Waimanalo, Hawaii, December, 1-2, 2011

Weight Gain

Diet

AgriLIFE RESEARCH

P = 0.169

Survival

Supplement (% of diet)

P=.0748

% Energy Retention

Supplement (% of diet)

P=.0168*

Proximate Composition

Supplement (% of diet)

Protein Digestibility Coefficient

Diet

P = 0.0031

For the conditions of this experiment:

CONCLUSIONS

- •Fish fed whole or defatted algae had higher % weight gain but there were no significant differences.
- Survival of fish fed diets containing either 10% whole or defatted algae was significantly greater than fish fed reference diet.
- •% energy retention for fish fed diets containing whole or defatted algae was lower than for fish fed reference diet.
- There were no differences is proximate composition for fish fed any of the diets.
- Protein digestibility for fish fed algae was less that those fed reference diet with the 5% level significant.

Lipid Extracted Algae as a Protein Supplement

- Lipid extracted algae in the cow-calf industry
 - Compete with SBM & CSM
 - SBM: 54% protein, <2% lipid; \$440/ton
 - CSM: 48.9% protein, <2% lipid; \$448/ton
- Keys to value
 - Higher crude protein content
 - Reduced ash content
 - Material form /addingvalue

AgriLIFE RESEARCH

3 Current Projects

- Exp. 1: Evaluate the palatability of lipid extracted algae at divergent inclusion levels and with differing carriers as a supplement to cattle consuming forage
- Exp. 2: Determine the effect of increasing the amount of supplemental lipid extracted algae delivered on forage utilization in steers
- Exp. 3: Determine the effect of lipid extracted algae on the utilization of low-quality forage

Exp. 1 Palatability

- Angus steers in a 12 × 12 Latin square
- 12 4-d periods

- Hay offered at 2% of BW at 0600 h
- Supplement offered at 1200 h
- Rate of intake was observed; after 1-h, any refusals were collected, weighed & sampled

 AgriLIFE RESEARCH

Experiment 1

Hay - 0600 h

Supplement – 1200 h

Supplement Composition

	Dried Distillers'	Lipid Extracted Algae
1	100	0
2	80	20
3	60	40
4	40	60
	Cottonseed Meal	Lipid Extracted Algae
5	100	0
6	80	20
7	60	40
8	40	60
	Liquid Supplement	Lipid Extracted Algae
9	100	0
10	66	33
11	33	66 AgriLIFE RESEARCH
12	0	Biofuels Co-Products Workshop Waimanalo, Hawaii, December, 1-2, 2011

Time required for complete consumption

Grams consumed per minute

Summary

- Lipid extracted algae was not as palatable as distiller's grains or cottonseed meal when offered alone.
- Lipid extracted algae when mixed with distillers' grains or cottonseed meal at levels of up to 60% did not negatively affect the pattern of supplement consumption in beef cattle.
- These results are encouraging for the use of lipid extracted algae in grazing cattle supplements and suggest the possibility of additional value in supplements containing lipid extracted algae.

Summary

- ➤ Data to date indicate that defatted algae can replace either soybean or fish meal in marine fish and shrimp diets.
- ➤ Data to date indicate that defatted algae can be use as a supplement in cattle diets.

HOWEVER ---

Concerns

- Protein level is less in defatted algae than whole algae.
- High divalent cation (e.g. Fe, Al) levels in defatted algae.

Preliminary Algae Co-Product Value to Fish, Shrimp, Cattle

- ➤ Assuming algae co-product protein level equal to protein level of ingredient being replaced ---
- Fish meal in marine fish and shrimp diets: \$1,200 to \$1,400/m.t.
- ➤ Soybean meal in marine fish and shrimp diets: \$400 to \$440/m.t.
- ➤DDGS meal in cattle: \$300 to \$330/m.t.

Acknowledgements

- Funded in part by US Department of Energy under contract DE-EE0003046 awarded to the National Alliance for Advance Biofuels and Bioproducts and by Texas AgriLife Research, Texas A&M University System
- Staffs of the Texas AgriLife Research
 Mariculture Laboratory at Port Aransas and
 Departments of Animal Science and Wildlife
 and Fisheries Sciences, Texas A&M University
 System

From Texas A&M University

Thank You!!!!!

Texas A&M System