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Abstract

Chondrus crispus, or Irish moss, is a common edible red seaweed that can be found on 
rocky shores in the Northern Atlantic. The cell wall contains carrageenan and C. crispus 
is the original source of this commercially used thickener. Because of the ecological 
and economic importance of this red alga a relatively important research literature 
exists and one of the recent achievements in C. crispus research is the sequencing of 
its genome. In this chapter we review some of the literature with the aim to promote 
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C. crispus as a model organism for florideophyte red seaweeds. We consider subjects 
like commercial and historical uses, ecology, genetics, population structure, mating 
systems, physiology, cell wall biology and genomics.

3.1  INTRODUCTION

	 The red algae are eukaryotic organisms without flagella and centrioles 
with floridean starch as their energy reserve, using chlorophyll a and with 
phycobiliproteins as accessory pigments, giving them their distinctive colour. 
There are around 6000 species of red algae described (Guiry, 2013) and most 
are multicellular, macroscopic, marine and have sexual reproduction. The red 
algae are one of the three groups forming the Archaeplastida, together with 
the glaucophytes and the green lineage, and are thought to have emerged as an 
independent lineage ∼1500 million years ago (Yoon, Hackett, Ciniglia, Pinto, & 
Bhattacharya, 2004; Yoon, Müller, Sheath, Ott, & Bhattacharya, 2006).

Red seaweeds are important components of the inter- and subtidal flora 
and are commonly found where suitable substrates are available from the 
polar areas to the tropics and even though most species are marine, they 
also exist in brackish and freshwater (Woelkerling, 1990). Red algae are also 
economically important; over 9 million tonnes are cultivated annually (FAO, 
2012), with a value of over 2000 million USD. Despite the importance of red 
algae, the number of researchers that dedicate themselves to their study is still 
deficient. We believe that one of the reasons for this lack of visibility of this 
interesting group of organisms is the absence of a model species.

Chondrus crispus is a red seaweed, also called Irish moss, belonging to 
the Florideophytes, a group of multicellular red algae comprising of 95% 
of extant species and most of the species with an ecological importance 
(Woelkerling, 1990). It exhibits dichotomous branching and can be up to 
15 cm long (Figure 3.1). The colour varies from pale yellow, through green 
purplish red to almost black; in the gametophyte a blue iridescence can 
often be found. The morphology is very variable and numerous forms have 
been described (Chopin et al., 1996). It commonly occurs on rocky shores 
and other hard substrata, inter- and subtidally, in the North Atlantic (Provan 
& Maggs, 2012) and is a source of carrageenan. Because of the ecologic 
and economic interest in this species an important scientific literature exists 
compared to other seaweeds. In this chapter, we try to review some of the 
literature and promote its use as a model for florideophyte red algae. Some 
arguments for using C. crispus as a model are shown in Table 3.1.
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Figure 3.1  Chondrus crispus Stackhouse Gigartinales and the family Gigartinaceae. 
Photo by Jonas Collén.

Table 3.1  Principal Arguments for Choosing Chondrus crispus as a Representative of 
the Red Macroalgae and of the Florideophytes

	•	� Typical red seaweed – allows for generalisations to other red algae
	•	� Well-defined species – simplifying ecological and physiological studies
	•	� Complex multicellularity – allows for comparisons and basic studies
	•	� Large morphological plasticity – allows for studies on correlation between 

morphology, environmental factors and genotype
	•	� Well studied red alga – background knowledge available
	•	� Common, ecologically important species – increases the importance of the 

research
	•	� Relatively small genome (105 Mbp) – facilitates sequencing and genomic 

studies
	•	� Easily cultivated in the laboratory – gives the possibility of controlled studies
	•	� Three different life cycle phases, accessible in the laboratory and in the field – 

allows for studies on effects of ploidy
	•	� Cell wall composed of carrageenan, with different types being produced in 

different life cycle stages
	•	� Related to economically important species – can give insight into the biology 

of, for example, Eucheuma and Kappaphycus species
	•	� Of commercial interest – increases the interest in applied research
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3.2  HISTORY

	 Chondrus crispus or Irish moss has been collected and utilised for human 
activities for hundreds of years (Allen & Hatfield, 2004; Mouritsen, 2013; 
Thorbjarnarson, 1939), but it was only in the late eighteenth century that the 
alga was assigned a scientific name. It initially appeared as Fucus filiformis Hud-
son 1762 as well as Fucus crispus Linnaeus 1767 (Guiry, 2013; Taylor & Chen, 
1973). Stackhouse, in 1797, determined that this taxon should be removed 
from the overly broad genus Fucus and entered Irish moss under the binomial 
C. crispus (Papenfuss, 1950). The species has long been recognised as being 
exceedingly polymorphic (Chopin et al., 1996), a fact that has resulted in a 
complicated synonomy (Newton, Devonald, & Jones, 1957). As early as 1797, 
Goodenough and Woodward, in their description of species for the Linnean 
Society added the comment regarding F. crispus that ‘No plant can be sup-
posed to vary more than this,’ and to corroborate, Lamouroux in 1813 listed 
8 varieties of the taxon, with 15 still undecided (Taylor & Chen, 1973).

Not surprisingly, the earliest references regarding the utilisation of C. 
crispus come from people living along the north eastern coastline of the 
Atlantic Ocean, where the alga has been collected for centuries as food 
and medicine (Allen & Hatfield, 2004). The properties of its major cell wall 
polysaccharides were noticed early by these people, and this characteristic 
ultimately resulted in the present day industrial utilisation of Irish moss. The 
first formal recognition of the gelling properties of boiled F. crispus were dis-
covered by Turner (1809), and this mucilaginous matter was named carra-
geenin by Pereira (1840), p. 564. The gelatinous, hot water-soluble mucilage 
of C. crispus was first isolated by Schmidt (1844). Coincidentally, in the same 
year, Forchhammer reported on the high sulphur content of the ash from 
C. crispus (Buggeln & Craigie, 1973).

Numerous common or vernacular names for C. crispus appear in many 
languages, i.e. Breton, English, French, Gaelic, German, Icelandic, Portu-
guese, Scandinavian, Spanish, Japanese and others (Chopin, 1986). This fact 
further attests to the longstanding and widespread use of the alga in human 
activities. Names such as carageen, carrageen, carrragheen, carraigin, car-
rageen moss, carrageen rock moss and Irish moss, etc. refer to the alga C. 
crispus. The etymology of carrageen remains uncertain although the word 
can be dated to 1829 when it may have been introduced as a commercial 
marketing term; its derivation from a town place in County Waterford, Ire-
land has been rejected (Bliss, 1985; Mitchell & Guiry, 1983).
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The domestic use of Irish moss was documented at least as early 
as 1809 (Bliss, 1985; Mitchell & Guiry, 1983). An 1829 reference to 
‘carrageen’ or Irish moss alluded to its putative therapeutic properties 
(Mitchell & Guiry, 1983), and a traditional treatment in Ireland for chest 
and lung ailments used Irish moss boiled in water or milk, strained and 
drunk hot (Allen & Hatfield, 2004). The alga also was used to treat kid-
ney ailments and burns. These medicinal applications were so valued 
that a recipe for preparing a demulcent from C. crispus ‘for diseases of 
debility’ was included in an early Materia Medica (Frazer, 1864). The 
relaxing effects of the extracted carrageenans on mucous membranes 
provided relief in tuberculosis, whooping cough, pneumonia, quinsy 
and for various gastrointestinal complaints. In his report regarding the 
potential for trade and development of new materials for commerce in 
Europe, carrageen or Irish rock moss was appraised as a feasible indus-
trial commodity (Simmonds, 1854).

Irish immigrants apparently carried the knowledge of the folk uses of 
Irish moss to the Americans very early in the nineteenth century, many 
of who settled in Boston, Massachusetts. Their requirements for carrageen 
were met by importing the dried seaweed, which in the early 1830s sold 
for US$1–$2 per pound (Humm, 1951; Smith, 1905). Dr J. V. C. Smith, a 
former mayor of Boston, pointed out to citizens, in 1835, that the rocky 
Massachusetts coastline supported an abundance of Irish moss. Irish fishers, 
Daniel Ward and Miles O’Brien of Scituate, Massachusetts, appear to have 
initiated the first commercial harvesting of seaweed in the USA between 
1848 and 1850 (www.stmaryscituate.org/aboutus_history.html).

Events relating to World War II provided a catalyst for the rejuvenation 
of the Irish moss industry. In particular, interdiction of the Asian sources of 
agar needed for bacteriology and penicillin production focussed attention 
on alternative domestic resources in both Europe and America. Relatively 
low biomass of agarophytes along North Atlantic coastlines meant carragee-
nophytes must be evaluated (Marshall, Newton, & Orr, 1949, 184 pp.). A 
process was developed and an agar substitute from Irish moss, termed ‘Brit-
ish agar’, was produced. It turned out to be quite suitable for bacteriological 
purposes, being superior in clarity to conventional agar.

By 1952, Irish moss extractives were second in volume of production 
(∼1.75 million  lbs/annum) to alginates in the USA, with food, drug and 
cosmetic and industrial applications consuming 50%, 40% and 10% of the 
moss extract respectively (Jertson, 1952). The first carload of Irish moss 
shipped from Canada was from Nova Scotia (10,000  lb in 1940) with a 

http://www.stmaryscituate.org/aboutus_history.html
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Newfoundland harvest of 28,795 lb in 1941. Exports from Prince Edward 
Island began in 1941with the shipping of 208,000 lb of dry moss (Humm, 
1951). Irish moss harvesting in the Canadian Maritimes increased from 
1.49 million lbs in 1943 to 87.05 million lbs in 1968 with the most rapid 
increase occurring after 1965 (Snaith, MacFarlane, & Johnston, 1969).

The annual standing crop of C. crispus is often variable and the labour 
associated with hand harvesting is arduous, and eventually commercial 
harvesting in Europe gave way to smaller, localised enterprises (Guiry & 
Hession, 1998). In North America, drag-rake harvesting became common 
practice by the mid-1950s, but the dramatic increase in Irish moss landings 
in the Canadian Maritimes during the late 1960s (Ffrench, 1971; Pringle & 
Mathieson, 1987; Snaith et al., 1969) was considered unsustainable. Imple-
menting modern farming technologies was then suggested as a means of 
supplementing the natural harvest (Neish, 1968; Neish & Fox, 1971). In 
1972, the first pilot-scale cultivation trials were conducted in Nova Sco-
tia at Meteghan and in New Brunswick at Point Sapin. Two commercial 
firms, Genu Products Canada Limited and Marine Colloids Inc., of Rock-
land, Maine (Craigie & Shacklock, 1989; Mathieson, 1982) were involved. 
Early stage C. crispus cultivation facilities appeared in France in 1976, and 
together, these clearly demonstrated proof of concept for growing Irish 
moss in tanks on land (Braud, 2006; Craigie, 1990; Craigie & Shacklock, 
1989; Mathieson, 1982). One, Acadian Seaplants Limited, Charlesville, is in 
commercial operation today.

Cultivated Eucheuma spp. from the Philippines began to enter the carra-
geenophyte market in significant quantities in the mid-1970s (Ricohermoso  
& Deveau, 1979) resulting in a dramatic reduction in demand for the more 
expensive Canadian Irish moss, which, until 1975, had supplied 75% of 
the world’s raw material for carrageenan production (Pringle & Mathieson, 
1987). The worldwide shortage of carrageenophytes in the 1970s led to 
similar collaborations between science and industry in France and focus on 
cultivating C. crispus in tanks intensified (Braud, 2006; Braud & Delépine, 
1981). Cultivation of Irish moss in the sea also was considered indepen-
dently in Canada and in France by SATIA, but the cost of such farmed sea-
weed precluded further development (Briand, 1991; Chopin, Sharp, Belyea, 
Semple, & Jones, 1999; DeRoeck-Holtzhauer, 1991). Although cultivated 
Irish moss was now uncompetitive as a carrageenan source, the Marine 
Colloids Inc. technology and infrastructure for cultivating this species was 
acquired in 1981 by Acadian Seaplants Ltd and by the early 1990s Irish moss 
was used directly as a food.
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3.3  ECOLOGY

	 Chondrus crispus is considered as a cold water and euryhaline species 
that inhabits the intertidal zone and is usually most abundant at 4–7  m 
below mean low water (MLW) but may extend from−18 m to more than 
+1 m and has been dredged from depths of −38 m MLW (Mathieson & 
Burns, 1975). The lower limits of vertical distribution are probably deter-
mined by a variety of factors such as wave action, water transparency, avail-
ability of solid substrata and competition for space. Chondrus crispus can be 
found growing on rocks in lower intertidal and shallow subtidal zones or in 
pools in the mid-intertidal zone in exposed locations. The most extensive 
populations occur on massive horizontal boulders on semi-exposed and 
open coastal sites, with reduced populations on smaller rocks and sand or 
sediment-covered rocks. Occasionally, C. crispus occur as detached healthy 
floating populations in the sublittoral zone (Prince & Kingsbury 1973a). 
The extensive distribution in estuarine habitats suggests a broad tolerance 
to temperature, salinity and light (Mathieson & Burns, 1971; Mathieson & 
Prince, 1973). On European coasts only a few plants occur as fixed forms 
at more than 20 m depth, while on the Canadian coasts, there are extensive 
settlements at this depth, indicating some differences in the potential of the 
species in these two regions (Kopp & Perez, 1978).

Chondrus crispus can be found in various forms that range from sporadic 
patches of thalli arising from a single holdfast to areas where the substratum 
is covered with a dense, uniform canopy (with numerous stipes per cm2) on 
intertidal and shallow subtidal rocky shores (Johnson, 2001). In comparison 
with solitary thalli, dense canopies are known to offer protection against flow-
induced mechanical forces (Johnson, 2001) and thus increasing productivity 
and growth. It can also form dense patches beneath Fucus or beneath canopy-
forming kelps such as Laminaria digitata (Schaal, Riera, & Leroux, 2010).

Chondrus crispus is widely distributed in the north western and north 
eastern Atlantic and adjacent waters, such as the North Sea. In the western 
Atlantic C. crispus is found from Labrador to New Jersey and in the Eastern 
Atlantic from approximately 69° N in Norway and on the southern coasts 
of Iceland to Portugal (MacFarlane, 1968; Provan & Maggs, 2012). Some 
sources mention records of C. crispus from California to Japan, however, 
any distribution outside the Northern Atlantic needs to be verified and 
probably results from confusion with other species of the same genus in the 
Pacific Ocean (Hu, Guiry, Critchley, & Duan, 2010).
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In the Atlantic only one species of Chondrus is known – C. crispus, but 
other species exist in the Pacific Ocean: Chondrus ocellatus Holmes, Chon-
drus giganteus Yendo, Chondrus nipponicus Yendo, Chondrus yendoi Yamada & 
Mikami, Chondrus pinnulatus (Harvey) Okamura, Chondrus armatus (Harvey) 
Okamura, Chondrus verrucosus Mikami and Chondrus retortus Matsumoto & 
Shimada. Chondrus giganteus can also be found in Mediterranean as an intro-
duced species (Hu et al., 2007; Matsumoto & Shimada, 2013).

The current geographical distribution of C. crispus is primarily deter-
mined by temperatures and consequently it may be impacted by global 
change and increasing water temperatures. For instance, Lima, Ribeiro, 
Queiroz, Hawkins, and Santos (2007) reported a northward shift of C. crispus 
from the southern limit of Portuguese populations of 180 km since 1971. In 
addition, a study using temperature-controlled water baths, Lüning, Guiry, 
and Masuda (1986) showed that most European strains of C. crispus ranging 
from northern Norway and Iceland to northern Spain survived a uniform 
upper temperature limit of 28 °C with a few European strains from the 
North Sea and English Channel area being able to sustain a 29 °C limit. 
Temperature has also a drastic effect on the reproduction of the species, 
Prince and Kingsbury (1973b) showed that the optimum temperature for 
germination and growth of spores (carpospores and tetraspores) was 21 °C. 
At temperatures above this threshold, spores died or developed abnormally 
after a few days of exposure. Above 30 °C even brief shock treatments result 
in spore mortality. At the other extreme, cultures maintained at 4 °C dis-
played inhibition of germination and growth.

Natural populations of C. crispus can survive freezing temperatures, but 
repeated freezing exposures can significantly limit productivity and biomass 
and thus influence the competitive ability of the species. Dudgeon, Davison, 
and Vadas (1990) showed that chronic freezing temperatures combined with 
high irradiance induced bleaching and fragmentation of fronds. Holdfasts 
survived the exposure and were capable of regenerating. The authors pos-
tulated that C. crispus combats freezing stress by phenotypic acclimation 
through maintenance of photosynthesis rather than by genetic adaptation.

3.4  LIFE CYCLE

	 The sexual life history of C. crispus was described by Darbishire 
in 1902. Nonmotile, short-lived male gametes (spermatia) are released 
and fertilise an egg (carpogonium) retained on the female gametophyte. 
The zygote is mitotically amplified within the cystocarp, a structure also 
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retained on the female thallus. The resulting diploid carpospores are an 
additional dispersive stage in comparison to other algal life cycles and 
germinate into the free-living tetrasporophyte. The tetrasporophyte pro-
duces haploid tetraspores via meiosis, which germinate into gametophytes 
(Figure 3.2).

Chen and McLachlan (1972) observed an increase in the number of 
cystocarps produced when male and female gametophytes obtained from 
cultured tetraspores were crossed in aerated culture chambers. Moreover, 
cystocarps failed to develop in the absence of male gametophytes, pro-
viding presumptive evidence of fertilisation (Chen & McLachlan, 1972). 
Krueger-Hadfield, Roze, Destombe, Correa, and Valero (2014) were the 
first to demonstrate cross fertilisation using genetic markers in the field and 
in the laboratory.

Male gametophytic fronds tend to be narrower, bearing spermatangial 
sori near the apices, which appear as pink or white bands (Darbishire, 1902; 

Figure 3.2  The life cycle of Chondrus crispus. A nonmotile spermatium fertilises the 
carpogonium which is retained on the female gametophytic thallus (syngamy). Within 
the cystocarp, the zygote is mitotically amplified potentially liberating thousands of 
genetically identical diploid carpospores following a single fertilisation event. The dip-
loid carpospores produce the diploid free-living tetrasporophyte. Meiosis occurs in the 
tetrasporophyte, releasing haploid tetraspores which form the free-living female and 
male gametophytes. (See the colour plate.) Images: S.A. Krueger-Hadfield.
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Taylor & Chen, 1973; Tveter-Gallgher, Mathieson, & Cheney, 1980). The 
white bands on reproductive males are distinct and located 3–10 mm below 
the apex, whereas, actively growing apices are pale tan or white only at the 
apex (Krueger-Hadfield, 2011). After spermatial discharge, the thalli disinte-
grate at the point immediately below the sori (Chen & McLachlan, 1972).

Female gametophytic fronds are slightly wider at the apices and, when 
fertile, bear distinctive cystocarpic tissue (Chen & McLachlan, 1972). Fred-
ericq, Brodie, and Hommersand (1992) found female gametophytes bearing 
cystocarps, which contained small patches of elongate surface cells near the 
apex which appeared to function as spermatangial initial cells. However, 
paternity analyses in natural populations of C. crispus revealed the presence 
of male alleles in cystocarpic DNA, with the exception of 11 cystocarps 
(<2%) that only exhibited one allele at all microsatellite loci (Krueger-
Hadfield et al., 2014).

Tetrasporophytic fronds have broad apices similar to female gameto-
phytes. When fertile, the apices are covered in ovate tetrasporangial sori, 
which appear reddish-orange in colour and bulge slightly from both sur-
faces of the frond (Taylor & Chen, 1973). Once the sori have released the 
tetraspores, the apical tissue appears a lighter colour than the remainder of 
the frond.

3.5  GENETICS, POPULATION STRUCTURE AND THE 
MATING SYSTEM

	 Mendelian genetic analyses were an excellent tool for studying 
inheritance patterns before molecular genetic tools were readily available.  
van der Meer (1987) reviewed the use of colour mutants to detect fertili-
sation, distinguish between self- and cross fertilisation and to distinguish 
between sexual and asexual processes. Pigmentation mutants of C. crispus 
were found to either follow strict maternal inheritance or classic Mendelian 
transmission ratios, for example, cell masses in old tetrasporangial sori found 
in culture were the product of an asexual process in somatic tetrasporangial 
tissue (van der Meer, 1987). None of the studies using molecular genetic 
markers (e.g. Cheney & Mathieson, 1979; Chopin et al., 1996; Donaldson, 
Chopin, & Saunders, 2000) were sufficiently powerful in order to explore the 
mating system and gene flow in detail. This is all the more surprising as the 
majority of populations are gametophyte biased, male gametophytes were 
thought to be rare (but see Krueger-Hadfield, Roze, Mauger, & Valero, 2013; 
Tveter-Gallagher et al., 1980) and genet identification is virtually impossible 
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when holdfasts form contiguous mats on the available substrata and give rise 
to numerous upright fronds (Bhattacharya, 1985). Moreover, coalescence of 
neighbouring genets may occur in the field, resulting in chimeric holdfasts 
that consist of more than one genotype (Krueger-Hadfield, 2011; Santelices 
et al., 1999; Scrosati & Mudge, 2004; Tveter-Gallagher & Mathieson, 1980).

Using different markers, such as isozymes (Cheney & Mathieson, 1979), 
restriction fragment length polymorphism (Chopin et al., 1996), amplified 
fragment length polymorphism (Donaldson et al., 2000) and inter-simple 
sequence repeat (Wang et al., 2008), C. crispus has been found to be highly 
genetically variable over its range distribution. These molecular markers 
were analysed at large geographic scales establishing that C. crispus on both 
sides of the North Atlantic are conspecific (Chopin et al., 1996) as well as 
indicating limited dispersal capacities (Donaldson et al., 2000; Wang et al., 
2008; Provan & Maggs, 2012). There were, however, discrepancies among 
the studies regarding the relationship between gene flow and geographic 
distance (Donaldson et al., 2000; Hu et al., 2010; Provan, Glendinning, Kelly, 
& Maggs, 2013; Wang et al., 2008).

Krueger-Hadfield, Collén, Daguin‐Thiébaut, and Valero (2011) were 
the first study to directly assess genetic structure and the mating system in 
C. crispus using codominant microsatellite loci. The authors found very few 
repeated multilocus genotypes, no difference in allele frequencies between 
haploid and diploid phases and no linkage disequilibrium, suggesting sexual 
reproduction was the prevailing reproductive mode. Moreover, there was 
no detectable cystocarpic effect as the tetrasporophytes sampled had unique 
multilocus genotypes. However, it was not possible to distinguish between 
high levels of inbreeding or spatial substructuring in driving the significant 
pattern of heterozygote deficiency. In order to effectively address this issue, 
Krueger-Hadfield et al., (2013) explored hierarchical population structure 
at high and low shore populations and demonstrated heterozygote deficien-
cies were driven by high levels of inbreeding. Second, high and low shore 
individuals were found to belong to genetically differentiated populations, 
despite being separated by less than a few meters in vertical tidal height 
and less than 30 m in horizontal topographical distance. Third, gene flow 
was restricted within the high shore habitat due to daily tidal cycles where 
the high shore population could be exposed for twice the amount of time 
as the low shore population. Within-shore genetic differentiation reduced 
genetic diversity and increased levels of inbreeding indicated the high shore 
as a marginal environment. The results from Krueger-Hadfield et al. (2011, 
2013) suggested the same mechanisms as those occurring over a species’ 
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distributional range may be at work at fine scales within the intertidal shor-
escape with core and marginal population dynamics.

Yet, indirect estimates of the mating system (i.e. Fis) can be strongly 
influenced by spatial substructuring or biparental inbreeding (i.e. mating 
between close relatives). Paternity analyses have been used to describe the 
mating system of animals and plants (e.g. Zipperle, Coyer, Reise, Stam, & 
Olsen, 2011), but have rarely been applied to red seaweeds (but see, Engel, 
Wattierf, Destombe, & Valero, 1999). Moreover, paternity analyses enable 
the detection of apomixis or intragametophytic selfing (i.e. the fusion of 
gametes produced by the same gametophyte, resulting in homozygosity at 
all loci, Klekowski, 1973), which would otherwise be difficult to detect by 
only analysing population structure. Krueger-Hadfield et al. (2014) docu-
mented higher levels of relatedness between males siring carpogonia on a 
single female gametophyte than when compared to males in the entire pop-
ulation. Moreover, the paternity analyses verified hypotheses of restricted 
spermatial and clumped spore dispersal generating high levels of inbreeding 
as proposed in Krueger-Hadfield et al. (2013).

In order to understand the impacts of the intertidal shorescape on gene 
flow and the mating system in C. crispus, the first hurdle is the identifica-
tion of a genet. The majority of studies have utilised different sampling 
techniques in which the genet (holdfast including all upright fronds; sensu 
Kautsky & Ehn, 1993) or the ramet (frond; e.g. Bhattacharya, 1985) was 
studied. Krueger-Hadfield (2011) sampled each frond from two morpho-
logically distinct gametophytic holdfasts grown in the laboratory from 
tetraspores. At least six different genotypes were detected among the two 
holdfasts, suggesting holdfasts in the field may be composed of more than 
one genotype. Moreover, in natural populations, holdfasts of mixed ploidy 
are common (Plumb, 1999; S. A. Krueger-Hadfield, pers. obs.). By under-
standing genet composition and distribution within the shore, it will be 
possible to determine spermatial and spore dispersal distance and describe 
gene flow in more detail.

3.6  ECOLOGICAL AND BIOCHEMICAL ASPECTS OF 
BIOTIC INTERACTIONS

	 Field observations of biotic interactions with smaller organisms are 
rather limited for C. crispus (Andrews, 1976; Krueger-Hadfield, 2011), but 
it can be heavily fouled by epibionts, such as ascidians and bryozoans (Wahl 
& Mark, 1999) and this is strongly dependent of interactions with snails 
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(Stachowicz & Whitlatch, 2005). No adelphoparasite or unpigmented red 
algal parasite is known in C. crispus (Goff, 1982). However, as early as 1889, 
the ascomycete Lautitia danica was described growing on the cystocarps of 
C. crispus by Rostrup (1889) in Denmark and later more detailed studies 
were provided (Jones, 1898; Rosenvinge, 1906). The fungus was present all 
year round in cystocarps but also in tetrasporangia (Stanley, 1992; Wilson & 
Knoyle, 1961). In natural populations, C. crispus is also plagued with a vari-
ety of green (Acrochaete spp., Phaeophila dendroides) and brown (Streblonema 
spp.) algal endophytes, as well as with the oomycete Petersenia pollagaster 
(reviewed in Correa, 1996).

Surprisingly, knowledge on C. crispus-associated bacteria is limited as 
a description of surface fouling (Sieburth & Tootle, 1981). This limited 
knowledge may be related to the fact that the species is known to shed 
outer layers of cell wall and cuticle glycoproteins to clean its surface from 
epibionts (Craigie, Correa, & Gordon, 1992; Correa & McLachlan, 1988).

A better knowledge during the 1980s and 1990s corresponded to the 
establishment of large-scale cultivation farms of C. crispus with increased 
frequency of pathologies (Craigie & Correa, 1996). These authors described 
the etiology of a number of infection diseases in cultivated C. crispus from 
Canada. Grazer impacts were also shown to be heavy in these land-based 
cultivation systems at early stages. Schacklock and Croft (1981) described 
important damage and differential effects caused by isopod, amphipod and 
gastropod grazers in maricultured C. crispus. The main frequent epiphytes 
in tank cultures of C. crispus are Ulva spp. and members of the brown algae 
Ectocarpales and, interestingly, it was proposed to introduce some amphi-
pod grazers in culture tanks to keep the thallus clean of epiphytes (Schack-
lock & Doyle, 1983).

One of the most important diseases resulting in tissue degradation was 
reported to be caused by the oomycete Petersenia pollagaster (Craigie & 
Shacklock, 1989; Molina, Hughes, & Craigie, 1988). The parasite selectively 
destroys frond apices. But studies of biotic interactions culminated with the 
in-depth studies of endophytism by small filamentous green algae in natu-
ral and cultivated populations of C. crispus in Atlantic Canada (Correa & 
McLachlan, 1991, 1992, 1994; Correa, Nielsen, & Grund, 1988; Nielsen & 
McLachlan, 1986; Correa et al., 1987). Of particular interest is its association 
with Acrochaete operculata, as it displays a high degree of host-phase specific-
ity (Correa & McLachlan, 1991). The filaments of the green alga are able to 
completely invade the medullary tissues of the sporophytic generation of the 
red alga, whereas they do not penetrate beyond the outer cell layers of the 
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gametophytic plants (Correa & McLachlan, 1991, 1994). In consequence, it 
causes cellular damage only to the sporophytes of C. crispus (Rhodophyta) 
and leads to secondary bacterial infections by facultative pathogens from 
the Cytophaga/Flavobacterium group (Correa & McLachlan, 1992; Craigie 
& Correa, 1996). In addition, these sporophytes are more palatable for iso-
pod grazers (Correa & McLachlan, 1992). This evidence suggested that host 
specificity in A. operculata is determined by cell wall composition of the 
hosts, likely the carrageenan fraction. In contrast, Acrochaete heteroclada was 
not host specific, infecting all offered hosts, including carrageenophytes and 
agarophytes (Correa & McLachlan, 1991). This hypothesis of host recogni-
tion through the perception of cell wall galactans was later tested and vali-
dated by Bouarab, Potin, Correa, and Kloareg (1999). The life cycle phases 
of C. crispus differ by the degree of sulphation of their cell wall carrageenans. 
The preincubation of A. operculata zoospores with κ-type oligocarrageen-
ans, only present in the gametophyte cell walls, was shown to significantly 
decrease the penetration of A. operculata into C. crispus sporophytic tissues, 
whereas the elicitation by sporophyte-specific λ oligocarrageenans increases 
its virulence against C. crispus gametophytes (Bouarab et al., 1999).

In C. crispus, the investigations of metabolic regulations during this spe-
cific interaction have contributed to a better knowledge of the immunity 
responses of red algae. (For reviews Bouarab, Kloareg, Potin, & Correa, 
2001; Bouarab, Potin, Weinberger, Correa, & Kloareg, 2001; Cosse, Leblanc, 
& Potin, 2008; Potin, 2008; Weinberger & Potin, 2010). Chondrus crispus 
gametophytes respond to cell-free extract of A. operculata, by the emission 
of reactive oxygen species essential in gametophyte resistance and through 
the activation of a NADPH oxidase homolog (Bouarab et al., 1999). This 
enzyme is likely to be encoded by the homolog of respiratory burst oxi-
dase gp91phox, later characterised in C. crispus (Hervé, Tonon, Collén, Corre, 
& Boyen, 2006). The induced resistance of gametophytes was shown to 
be dependent of the downstream activation of signalling cascades involv-
ing compounds derived from the oxidative metabolism of polyunsaturated 
fatty acids (PUFAs) (Bouarab et al., 2004). It was the first demonstration 
that the oxylipin pathways are activated during immunity responses of red 
algae (Bouarab et al., 2004). In this context, the methyl ester of the plant 
stress hormone jasmonic acid was revealed to promote the liberation of 
both C20 and C18 PUFAs-derivative oxylipins, such as prostaglandins, and 
to increase transcription of defence-related genes (Gaquerel et  al., 2007; 
Hervé et al., 2006). Contact of A. operculata with κ-oligocarrageenans also 
enhances secretion of l-asparagine, which in turn induces a release of H2O2 
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by C. crispus (Weinberger, Pohnert, Kloareg, & Potin, 2002). This reac-
tion is apparently catalysed by an apoplastic l-amino acid oxidoreductase 
and could prevent settlement of A. operculata zoospores (Weinberger et al., 
2005). The gametophytes also synthesise ultraviolet absorbing compounds 
around the sites of A. operculata zoospore penetration. This reaction sug-
gests the involvement of the phenylpropanoid metabolism, as also shown by 
the activation of shikimate dehydrogenase and phenylalanine ammonialyase 
(Bouarab et al., 2004). The emission of volatile halocarbon compounds is 
another chemical defence strategy used by C. crispus, as shown in other 
red algae (for reviews Potin, Bouarab, Salaün, Pohnert, & Kloareg, 2002; 
 Weinberger & Potin, 2010).

Biotic interactions are not solely negatively affecting C. crispus. Positive 
interactions were shown to occur in raceway tanks between the diatom 
Odontella aurita and C. crispus as well as the edible red alga Palmaria pal-
mata. Allelopathic compounds or other exudates emitted by the two species 
favour diatom aquaculture and prevent the contamination of these cultures 
by other microalgal species that often bloom in pond cultivation (Braud, 
1998).

3.7  PHOTOSYNTHESIS

	 Chondrus crispus has a relatively important research history concerning 
its photosynthesis due to its abundance and its suitability for measurements of 
physiological parameters. This literature dates back to at least 1885 (Rattray, 
1886) where it was noted that photosynthesis of C. crispus was relatively low 
in November. Intertidal algae are exposed to varying light regimes with sea-
sons, weather patterns, diurnal changes and tidal cycles and need to be able to 
acclimate or adapt in order to react to the patterns of immersion and emersion 
and associated changes in light, temperature, pH, CO2-content and osmolarity. 
A number of studies have highlighted the importance of these environmental 
parameters on the photosynthesis of C. crispus.

Light and temperature are key factors regulating photosynthesis. Maxi-
mum photosynthesis of C. crispus is typically found around 200 μmol pho-
tons/m2/s (Brechignac & Andre, 1984b; Johansson & Snoeijs, 2002; Mathieson 
& Norall, 1975) with photoinhibition occurring at higher light intensities 
(Mathieson & Burns, 1971). Algae collected subtidally had maximum photo-
synthetic rate at lower light intensities and tetrasporophytes exhibited higher 
photosynthetic rates than female gametophytes (Mathieson & Norall, 1975). 
Optimum temperatures for photosynthesis have been reported between 20 
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and 25 °C (Kübler & Davison, 1993; Mathieson & Burns, 1971). This range is 
higher than is usually indicated as optimal for growth, 6–18 °C (Bidwell, 
McLachlan, & Lloyd, 1985). The efficiency of photosynthesis has been 
shown to decrease at noon and increase in the late afternoon (Sagert, Forster,  
Feuerpfeil, & Schubert, 1997).

One aspect of light and photosynthesis that has attracted much atten-
tion is the effect of UV-radiation. There is important literature on effects on 
thalli (e.g. Bischof et al., 2007; Kräbs & Wiencke, 2005; Roleda, Wiencke, 
Hanelt, & Bischof, 2007; and references therein). In intertidal algae living 
in northern temperate and polar regions, freezing is an extreme form of 
temperature stress and affects C. crispus in the northern part of its range. 
Twelve hours of freezing at −20 °C caused a decrease in photosynthesis 
by 58% and a decrease in respiration by 32% with a concomitant efflux of 
amino acids, indicating membrane damage (Davison, Dudgeon, & Ruan, 
1989). Chondrus crispus showed full recovery of photosynthesis, 48 h after 
3 h exposure to −20 °C, whereas, after 6 h at −20 °C, full recovery was not 
seen (Dudgeon, Davison, & Vadas, 1989). The freezing causes tissue freez-
ing (Davison et al., 1989; Kanwisher, 1957). The effects of freezing can be 
reduced by acclimation; daily freezing at −5 °C reduced the photosynthesis 
initially with 75%, but after acclimation to subsequent freezing, photosyn-
thesis decreased only by 40% (Dudgeon et al., 1990). The acclimation to 
freezing also reduced the release of amino acids after exposure.

In order to achieve efficient photosynthesis, internal concentrations of 
CO2 need to be sufficient to reduce photorespiration. Carbon concen-
tration mechanisms have been demonstrated in many seaweeds (Raven 
& Hurd, 2012) including C. crispus (Bréchignac et al., 1985a, Brechignac, 
Andre, & Gerbaud, 1986). Thallus and protoplasts of C. crispus use extracel-
lular and intracellular carbonic anhydrase to increase the availability of CO2 
for Rubisco (Smith & Bidwell, 1987, 1989a) while the direct use of HCO3

− 
remains unclear. Brechignac et al. (1986) suggested it to be important, while 
Smith & Bidwell (1989b) showed different results. Chondrus crispus does not 
seem to be limited by content of inorganic carbon since increased growth 
with increased CO2 was only seen at high temperatures (Sarker, Bartsch, 
Olischläger, Gutow, & Wiencke, 2013). It should also be noted that C. crispus 
lacks pyrenoids, chloroplast Rubisco-containing bodies, which have a role 
in carbon concentrating mechanisms (Badger et al., 1998).

Photosynthetic organisms need systems to control the efficiency of their 
photosynthetic apparatus as well as balancing the energy between photosys-
tem 1 and 2 (PS1 and PS2). In C. crispus, this is achieved by a spill-over from 
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PS1 to PS2, which is a direct funnelling of energy from PS1 to PS2 without 
going through the reaction centre of PS1. This process is controlled by the 
redox status of the plastoquinone pool (Kowalczyk et al., 2013).

In addition to oxygen production, during daytime, oxygen uptake dur-
ing photosynthesis has been studied in C. crispus in some detail (Brechignac 
& Andre, 1984, 1985b; Brechignac & Furbank, 1987). The oxygen uptake 
represents 37% of the net photosynthesis and was always higher than dark 
respiration. During CO2 limiting conditions, Rubisco oxygenase activity 
represented less than half of oxygen uptake, pseudocyclic photophosporyla-
tion less than 20% and other reactions, such as respiration, the remainder. 
These studies showed that the uptake of oxygen in the light was relatively 
insensitive to CO2 concentrations, but sensitive to increased oxygen con-
centrations.

3.8  GENES AND GENOMES

	 A crucial element for the establishment of a biological model organ-
ism is an important and pertinent knowledge of the genes and genomes of 
the organism. This enables the use of high throughput molecular methods 
and for global comparisons with other organisms. Presently, the knowledge 
of genes and genomes in C. crispus is more important than in other red mac-
roalgae allowing for its efficient use in scientific research. To our knowledge 
the first genome sequence from C. crispus, of the 18S rRNA gene dates 
to 1992 (Bird, Murphy, Rice, & Ragan, 1992), even though the amino 
acid sequence of flavodoxin was known earlier, analysed through enzymatic 
digestion of the protein (Wakabayashi, Kimura, Fukuyama, Matsubara, & 
Rogers, 1989).

The mitochondrial genes and genome of C. crispus have been sequenced 
and studied (Boyen, Leblanc, Bonnard, Rienenberger, & Kloareg, 1994; 
Boyen, Leblanc, Kloareg, & Loiseaux-de Goer, 1994; Leblanc, Boyen, et al., 
1995; Leblanc, Kloareg, Loiseaux-de Goër, & Boyen, 1995; Leblanc et al., 
1997; Richard, Bonnard, Grienenberger, Kloareg, & Boyen, 1998; Richard, 
Kloareg, & Boyen, 1999; Viehmann, Richard, Boyen, & Zetsche, 1996). The 
mitochondrial genome is circular and has a relatively small size (26 kb), and 
is thus very different from angiosperms, despite the fact that the genes are 
phylogenetically close. It codes for 51 genes, has high coding density (95.2% 
coding) with only one intron and contains ten overlapping regions. The 
genome is transcribed into two large primary transcripts that are further 
matured via multiple processing steps involving tRNA genes.
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The plastid genome of C. crispus was sequenced as a part of the 
genome project. The relatively large of size 180,086 bp is typical for most 
red algae. The genome codes for 240 unique genes of which 204 are 
protein coding and three genes are of unknown function (Janouškovec 
et  al., 2013). One unprecedented feature found in C. crispus and other 
florideophyte red algae is a group II intron in a tRNA-Met gene that 
encodes a maturase.

The nuclear genome of C. crispus is 105 Mbp, is estimated to code for 
9606 genes (Collén et al., 2013). The genes are characterised by their com-
pact nature, caused by the very low content of introns considering the 
genome size and small untranslated regions (UTR) (Figure 3.3). 88% of 
genes have no introns and the existing introns are typically short with an 
average length of only 182 bp. Taken together this means that the genome 
is by dominated intergenetic DNA, with a high degree of repetition. The 
intergenetic DNA is organised in regions with low gene density inter-
spersed with clusters of genes with short distances between protein coding 
genes and with very high gene density. The low intron content, small UTR 
and clustered genes are generally associated with compact small genomes. 
This resemblance with compact genomes is also seen by the relatively low 
number of genes, the small genome families and with no indication of 
genome duplication.

Prior to the genome project a study was performed in order to gain 
increased knowledge of genes in red algae and in particular genes impor-
tant for cell wall synthesis (Collén et al., 2006b). The study compared the 
transcriptome of protoplasts (cells devoid of cell wall after treatment with 
cell wall digesting enzymes) and nonstressed thallus plants. The approach 
yielded 2291 nonredundant sequences with a large repertoire of stress genes 
as well as many genes of unknown function. The collection of expressed 

Figure 3.3  Genome composition of Chondrus crispus. The intergenetic part of the 
genome is the nonprotein coding parts between genes and the UTR are the 5′ and 3′ 
nontranslated part of the genes. UTR, untranslated regions.
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sequence tags (ESTs) were also used to construct cDNA microarrays that 
were subsequently used for physiological studies (Collén et  al., 2006a;  
Collén, Guisle‐Marsollier, Léger, & Boyen, 2007). To support the annota-
tion in the genome project another 300,000 ESTs were sequenced repre-
senting 8212 contigs (Collén et al., 2013).

3.9  PERSPECTIVES ON PRIMARY METABOLISM

	 Most of the primary amino acid metabolic related genes were found 
in single copy in the C. crispus genome, with the exception of glutamine 
synthase, aspartate transaminase and urea transporters (Collén et al., 2013). 
Chondrus crispus lacks the glutamate synthase gene, thus glutamate would 
necessarily be synthesised by glutamate dehydrogenase and not through 
the cleavage of glutamine by glutamate synthase. The genome appears to 
contain no ureases or arginases, important for the urea cycle, though it 
does have genes coding for urea transporters. It is likely that C. crispus can 
metabolise urea as a gene encoding a fusion protein of urea carboxylase and 
allophanate hydrolase was identified and degradation of urea by such fusion 
proteins has previously been shown (Genbauffe & Cooper, 1991). Due to 
the lack of arginases it is unlikely that proline is synthesised from arginine; 
however, the genome contains genes for a pyrroline-5-carboxylate reduc-
tase and a 1-pyrroline-5-carboxylate synthase suggesting that C. crispus is 
capable of synthesising proline from glutamate. For UV protection C. cris-
pus synthesises the UV-absorbing mycosporine-like amino acid shinorine 
(Kräbs, Watanabe, & Wiencke, 2004). Other amino acids identified include 
gigartinine, l-citrullinyl-l-arginine, ornithine and citrulline (Laycock & 
Craigie, 1977; Young & Smith, 1958).

The C. crispus genome codes for all enzymes involved in plastidial fatty 
acid synthesis and their transport to the cytosol. Furthermore, it has at least 
one gene for each of the enzymes involved in the microsomal fatty acid 
elongase complex. It produces PUFAs and is notable for its high levels of 
arachidonic acid (Fleurence, Gutbier, Mabeau, & Leray, 1994; van Ginneken, 
Helsper, de Visser, van Keulen, & Brandenburg, 2011; Lamberto & Ackman, 
1994). It is unlikely that fatty acid desaturation occurs in the plastid as the 
genome lacks an ACP desaturase although several potential desaturases have 
been annotated, comprising a stearyol-CoA desaturase, a Δ12 and a Δ15-
desaturase and two genes for PUFA desaturases. Sphingolipids containing 
inositol that have been reported in other red algae (Khotimchenko, Klochkova, 
& Vaskovsky, 1990) and C. crispus shows the presence of genes required for 
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the production of 4-hydroxysphinganine, sphingosine-1-phosphate and 
ceramides, together with several genes for ceramide glycosyltransferases. A 
full complement of genes for the synthesis of thylakoid membrane lipids 
and phospholipids is contained within the genome. In addition, fatty acids 
may be stored in triacylglycerols through the acyl-CoA dependent or inde-
pendent pathway. Free C18 and C20 fatty acids may be further processed 
into oxylipins.

Unlike plants and green algae, which store their insoluble starch gran-
ules in their chloroplasts, the carbon energy of red algae is stored in the 
cytosol as floridean starch (Viola, Nyvall, & Pedersen, 2001). The glyco-
syl transferase (GT) families 5 and 13, involved in starch synthesis and 
glycoside hydrolase (GH) families 13, 14, 35 and 77, involved in starch 
recycling, are encoded within the C. crispus genome. While this organ-
ism has all the required proteins for starch synthesis and breakdown, their 
corresponding genes are unexpectedly low in redundancy, demonstrat-
ing a system simpler than that found in the green lineage. Four genes 
have been identified for synthesis and one for degradation of trehalose, a 
nonreducing disaccharide. In plants, trehalose is important in starch and 
sucrose regulation; however, sucrose metabolism is lacking in C. crispus  
and thus trehalose may have a different biological role. Another low 
molecular weight carbohydrate is the photo-assimilate mannosylglycerate 
(digeneaside; 2-d-glycerate-α-d-mannopyranoside) found in some red 
algae, though it has not been detected in C. crispus. However, the genome 
holds a gene coding for a mannosylglycerate synthase (GT78), which was 
likely acquired in red algae by horizontal gene transfer from a thermo-
philic marine bacterium. An alternative hypothesis is that the GT78 in  
C. crispus may be involved in the synthesis of floridoside (2-0-D-glycerol-
a-o-galactopyranoside) or isofloridoside (1-0-d-glycerol-a-d-galactopy-
ranoside), two heterosides known to be accumulated in this alga (Kremer, 
1980). One of the best characterised enzymes produced by C. crispus cor-
responds to a hexose oxidase which may be involved in algal defence 
and which oxidises hexose sugars to their corresponding lactones and 
aldobionic acids (see Rand, Qvist, Walter, & Poulsen, 2006 and references 
therein).

The integration of information available for C. crispus, in particular 
genome annotation, will be used to reconstruct metabolic networks; how-
ever, more metabolic profiling is certainly needed to complete existing 
observations.
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3.10  CELL WALL BIOLOGY

	 Red algal cell walls are a composite material often made of cellulose 
microfibrils embedded in a matrix composed of polysaccharides, and to 
a lesser extent, proteins and aromatic substances. In C. crispus the matrix 
components are highly sulphated galactans known as carrageenans. They 
are made up of linear chains of disaccharidic motifs of d-galactose resi-
dues with alternating α(1–3) and β(1–4) linkages and classified according 
to the number and position of sulphate esters and by the occurrence of a 
3,6-anhydro bridge in the α-linked residue. The κ-, ι- and λ-carrageenans 
are respectively substituted by one, two or three sulphate ester groups per 
digalactose repeating unit (Figure 3.4). Chondrus crispus synthesis all three of 
these carrageenans although variations are observed depending on the life 
stage. Carrageenans in gametophytes are a mixture of κ- and ι−carrageenans 
(∼70 and ∼20%), with the presence of low amount of biosynthetic precur-
sor motifs (∼8% μ-carrageenan and 2% ν-carrageenan). The tetrasporophyte 
synthesise only λ-carrageenans (Chopin, Bodeau-Bellion, Floc’h, Guittet, 
& Lallemand, 1987; Tasende, Cid, & Fraga, 2012). Carrageenans naturally 
occur as heteropolymers composed of a sequence of several moieties, and 
the use of dedicated enzymes from marine bacteria has lately served to 
address the specific distribution patterns of the carrabiose units within the 
chains (Guibet et  al., 2008; Jouanneau, Boulenguer, Mazoyer, & Helbert, 
2010).

As for land plants, the amorphous matrix polysaccharides are expected 
to be interconnected to other polysaccharides or crystalline polysaccharides 
and thus contribute to mechanical resistance, cell expansion, and cell wall 
cohesion (Carpita & McCann, 2000). However, very little is known of the 
nature of these polysaccharides in red algae. They represent a small portion 
of the wall (1–8% of the dry weight). Cellulose fibrils are the most com-
monly found polymer, but additional polymers, such as crystalline β(1–4)-
d-mannans, β(1–4) or β(1–3)-d-xylans, as sulphated α(1–3)-d-mannans or 
sulphated β(1–3/1–4)-d-glucans, have also been reported in various red 
algal species (Popper et al., 2011). Their existence in C. crispus still needs to 
be established.

The current knowledge on cell wall metabolism in red seaweed is very 
limited. The genome sequence of C. crispus allows some predictions on 
the cell wall metabolic pathways (Collén et al., 2013). The carrageenan 
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biosynthesis pathway is yet not fully understood and most of the steps 
stay therefore highly speculative. It was proposed that carrageenans are 
first synthesised in the Golgi apparatus as a linear and neutral backbone of 
galactan by galactosyl transferases that catalyse the polymerisation of galac-
tose residues (Figure 3.4). The alternation of α(1–3) and β(1–4) linkages 
would suggest the activity of two types of glycosyltransferases. Four genes 
homologous to chondroitin synthases were identified in C. crispus. These 
enzymes are involved in the biosynthesis of the sulphated glycosamino-
glycans in animals and therefore the red algal homologue is a good can-
didate for the biosynthesis of carrageenans. Following polymerisation, the 
initial sulphation is likely to occur in the Golgi apparatus by sulphotrans-
ferases. In C. crispus, nine genes similar to carbohydrate sulphotransferases 
were identified. Their animal homologues are involved in the biosynthesis 
of glycosaminoglycans, suggesting again that genes are likely involved in 
the carrageenan sulphation. The sulphated galactan obtained is thereaf-
ter transported into the wall where galactose-6-sulphurylases remove the 
C6-sulphate from precursors to form the 3,6-anhydro bridges. This final 
step of carrageenan synthesis was demonstrated in C. crispus gametophytes 
with the characterisation of two distinct galactose-6-sulphurylases, named 

Figure 3.4  Putative carrageenan biosynthesis pathway in Chondrus crispus with 
the corresponding candidate genes retrieved from the genome sequence. Only the 
conversions of μ- to κ-, and ν- to ι-carrageenan, were enzymatically demonstrated in  
C. crispus.
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sulphurylase I and II, which convert ν- into ι-carrageenan (Genicot-Joncour  
et  al., 2009). An enzymatic activity catalysing the conversion of μ- to 
κ-carrageenan has also been demonstrated in both life cycle phases of C. 
crispus (Wong & Craigie, 1978), but the corresponding gene is unknown. 
The C. crispus genomic analysis retrieved two genes identical to the pre-
viously cloned genes of sulphurylases I and II, but also ten additional 
paralogous genes of sulphurylase II (Figure 3.4). Among the nine sul-
photransferases identified in the C. crispus genome, some of them might 
also be present into the wall for further modifications of the carrageenan 
chains. Finally, while sulphatases were supposed to be involved in the 
carrageenan remodelling of the growing wall, no homologue has been 
identified in the C. crispus genome. This result suggests that no modifica-
tion in its sulphation pattern occur in carrageenan after its biosynthesis, 
or that new families of sulphatases may exist in the genome. By contrast, 
three glycosyl hydrolases related to κ-carrageenases from marine bacteria 
(Michel, Chantalat, Duee, et al., 2001; Michel, Chantalat, Fanchon, et al., 
2001) were identified in the genome sequence and are likely involved in 
cell wall remodelling.

Like in land plants, the cellulose microfibrils in red algae are synthesised 
by clusters of cellulose synthases (CESAs) in terminal complexes (TCs), 
which move in the plasma membrane. However, the morphologies of the 
TCs and the cellulose microfibrils they produce differ from those of land 
plants: the TCs are organised in linear rows, randomly distributed in the 
plasma membrane and the resulting microfibrils show a flat-ribbon or a 
rectangular-parallelepiped morphology (Tsekos, 1999; Tsekos, Reiss, & 
Schnepf, 1993). At least three different CESA proteins are required to form 
a functional rosette TC in plants (Mutwil, Debolt, & Persson, 2008), while 
the minimum number of recruited CESAs in functional TCs in red algae is 
unknown. In C. crispus, the genome sequence analysis retrieved two CESA 
genes, similar to those already described in the red algae Porphyra sp. and 
Griffithsia monilis. However these red algal CESAs have a distinct origin to 
those found in land plants and their acquisition probably predated the pri-
mary endosymbiosis event. A third CESA gene is found in C. crispus, unre-
lated to the previous, and probably of an ancestral bacterium origin. Such 
differences within the Archaeplastida lineage might explain the structural 
variation in the TC organisation and the cellulose microfibrils in red algae 
compared to land plants. Finally, Chondrus also possesses GH5, GH6 and 
GH45 cellulases, which are absent in plants and that might be involved in 
remodeling of the cellulose fibrils.
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Land plants require a rigid structure to support them against the pull of 
gravity, making crystalline cellulose an important part of the wall. By con-
trast marine algae need more flexible structures to accommodate the varying 
stresses of tidal and wave action and a cell wall mostly composed of carra-
geenans might fulfill this role. However the physiological significance of the 
variations in carrageenan composition in relation to mechanical, hydration 
or electrochemical regulations is still matter of debate (Kloareg & Quatrano, 
1988). The Chondrus gametophyte, with strong gelling κ-type carrageenans, 
has been shown to be mechanically superior to the tetrasporophyte, with 
nongelling λ-type carrageenans (Carrington, Grace, & Chopin, 2001), how-
ever, this is of no impact on the distribution of the life history phases in 
natural populations of C. crispus (Garbary, Tompkins, White, Corey, & Kim, 
2011). Regarding the hydration properties, if one assumes that sulphated 
carrageenans protect against desiccation by enhancing water absorption, we 
would expect the littoral populations of C. crispus to have increased carra-
geenan contents compare to the sublittoral ones. Again such assumption has 
yet failed to be clearly established (Fuller & Mathieson, 1972).

3.11  COMMERCIAL USES

	 The majority of fresh seaweeds, are not very palatable due to their 
texture, so they must be processed in some manner to improve their mouth-
feel. In the eighteenth century, the most common method of household 
processing involved cooking in some way, thus C. crispus was recognised 
very early for its special thickening characteristics. Other rhodophytes, such 
as Palmaria and Porphyra, became the seaweeds of choice for direct con-
sumption and as nutritional ingredients in foods, while C. crispus became 
valuable in the food and pharmaceutical industries. Less attention, therefore, 
was given to its potential health and nutritional benefits as a natural food.

The Irish moss based carrageenan industry in North America also devel-
oped rapidly in the early 1940s due to the pioneering work of Jacques 
Wolf and Company, Krim-Ko and Kraft Foods (Lewis, Stanley, & Guist, 
1988). The Krim-Ko operation at Scituate, Massachusetts, changed hands 
to become Seaplant Corporation, while the Kraft Food operation of South 
Portland, Maine, was taken over by Stauffer Chemical Company in 1970 
and was later closed. The Algin Corporation of America, Rockland, Maine, 
also began processing Irish moss soon after WWII to become a major car-
rageenan producer by the mid-1950s. In addition, it licensed carrageenan 
processing technology to SATIA of France (Lewis et  al., 1988). Marine 
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Colloids Inc., of Rockland, Maine, was formed by an amalgamation in 1959 
of the Algin and Seaplant Corporations, and by 1977 it, in turn, became a 
Division of FMC Corporation to remain as the sole manufacturer of car-
rageenan in the USA.

Commercial applications for Irish moss extract depend upon a detailed 
knowledge of the chemical and physicochemical properties of these phy-
cocolloids. In brief, key events included the resolution of hot water extracts 
from C. crispus into soluble and gelling fractions based upon their sensitivity 
to potassium ions (Smith & Cook, 1953). The authors coined the terms 
‘λ-carrageenin’ and ‘κ-carrageenin’ for these respective fractions. The pro-
portion of the κ-/λ- carrageenan fractions controls the performance of a 
given extract in milk reactivity and other valued functions of the phyco-
colloids (Witt, 1985; Stanley, 1987). This ratio issue was resolved when it 
was established that the sporophyte generation of C. crispus produced only 
λ-carrageenan devoid of 3,6-anhydrogalactose, while the κ-family of carra-
geenans characterised both the gametophyte phases of the alga (McCandless, 
Craigie, & Walter, 1973). The thorough historical review by Stortz (2005) 
discusses the pioneering studies by Rees (1972) and his colleagues.

In the early 1970s C. crispus from Canada provided 75% of the world’s 
production of carrageenan but, by 1992, C. crispus represented only 3.8% 
of the global harvest of carrageenophytes with Canada providing a mere 
12% (Chopin, 1998; Pringle & Mathieson, 1987). By the late 1990s, C. 
crispus from Brittany, Vendée and Normandy represented only 9% of the 
carrageenophytes supplying the French carrageenan industry (Kaas, 1998). 
In Ireland the bulk of the C. crispus harvest is sold locally where it is used 
primarily in cooking and as a natural cold remedy (Guiry & Hession, 1998).

Acadian Seaplants Limited, in conjunction with the National Research 
Council of Canada and other government partners, developed a unique 
and innovative food product from cultivated C. crispus. It is utilised in a 
rehydrated form primarily in the kaiso salad market of Japan, with some 
usage directed to soups and garnishes due to its unique colours, shape and 
consistent quality. However, the global dietary seaweed market is currently 
dominated by cultivated species such as Saccharina japonica (kombu), Undaria 
pinnatifida (wakame) and Pyropia (Porphyra) spp. (Ohno & Largo, 1998).

Research shows there are many therapeutic characteristics associated 
with seaweeds in general and a number of species from the dominant three 
genera have been investigated. Chondrus crispus possesses characteristics typi-
cal of most seaweeds, such as antioxidant capacities and mineral content 
(Cornish & Garbary, 2010; Ruperez, 2002; Sangha et al., 2013), but it also 
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provides specialised fibre in the form of both soluble and insoluble or fer-
mentable components (Rupérez & Toledano, 2003). These are important in 
gut health as fibre type has been demonstrated to affect subjective appetite, 
acute energy intake, long-term energy intake and body weight, due in large 
part as a function of the various physicochemical properties of the dietary 
fibres (Wanders et  al., 2011). Other research studies specific to C. crispus 
have demonstrated potential for therapeutic benefits in terms of antico-
agulant activity (Lee, Athukorala, Lee, & Jeon, 2008), lipid induced nitric 
oxide inhibition (Banskota et  al., 2013) and enhanced immune response 
(Liu, Hafting, Critchley, Banskota, & Prithiviraj, 2013).

Irish moss extracts provide valuable ingredients for cosmetic applications, 
in part as a result of their special hydrocolloid properties (Witt, 1985) and they 
also possess components with sunscreen and antiageing potential (Franklin,  
Kräbs, & Kuhlenkamp, 2001; Kräbs, Bischof, Hanelt, Karsten, & Wiencke, 
2002; Kräbs et al., 2004; Sinha, Singh, & Häder, 2007). Tank culture permits 
close control of crop traceability and management. The optimisation of pro-
duction rates is possible and opportunities for the appearance and isolation 
of phenotypic mutants are enhanced (van der Meer, 1981). Some of these 
may possess unique characteristics of commercial value and colour mutations 
enriched in blue pigment is an example (Cornish, O’Leary, & Garbary, 2013).

The long-term utilisation of Irish moss as a food and its well studied 
physiology make C. crispus a useful and versatile commercial product. Tank 
culture provides opportunities to exploit this alga as a vehicle for enhanced 
nutrition or increased functionality. Maximising control over the culture 
environment for C. crispus presents possibilities for the enhancement of use-
ful secondary metabolite compounds and antioxidant capacity by upregu-
lating its stress genes (Collén et al., 2007; Collén et al., 2006a; Yakovleva & 
Titlyanov, 2001). Cultivated C. crispus is now well positioned to become a 
global commercial success, again.
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