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1.  INTRODUCTION

Warming of the planet has accelerated in the last few
decades (IPCC 2007). Some of the most rapid changes
are occurring in the NE Atlantic (IPCC 2007), where in-
creases of up to 1°C have been recorded in areas such
as the Western English Channel (Hawkins et al. 2003).
Marine ecosystems have responded to this warming
with changes in abundance and shifts in geographic
ranges of plankton (Beaugrand & Reid 2003, Beau-

grand & Ibanez 2004, Hays et al. 2005), fish (Brander et
al. 2003, Beare et al. 2004, Genner et al. 2004), and off-
shore benthic organisms (Hiscock et al. 2004). Some of
the most marked and best-documented changes have
been seen on rocky shores in Europe (Herbert et al.
2003, Mieszkowska et al. 2005, Simkanin et al. 2005,
Lima et al. 2006, Mieszkowska et al. 2006, Herbert et al.
2007, Lima et al. 2007a), the United States (Barry et al.
1995, Harris et al. 1998, Sagarin et al. 1999, Zacherl et
al. 2003, Harley et al. 2006) and South America (Ri-
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vadeneira & Fernandez 2005). In general, coldwater
adapted species are decreasing in abundance and re-
treating polewards while warm water species are in-
creasing in abundance and advancing.

Phenological changes have also been recorded in the
NE Atlantic in relation to past climatic fluctuations (Sims
et al. 2001, Sims et al. 2004) and phase shifts have been
shown as a result of recent change (Edwards & Richard-
son 2004). These phase shifts may have major conse-
quences throughout food webs including influencing the
recruitment of commercially important species (Beau-
grand et al. 2003, Edwards & Richardson 2004).

Long-term data sets are particularly valuable in
putting recent changes into context. Current abun-
dances and biogeographic distributions of species can
be compared to those of previous warm periods such as
the end of the 19th century and the middle of the 20th
century (Fig. 1). Some of the most comprehensive data
sets in terms of species recorded and temporal extent,
albeit interrupted, have been collected in the Western
English Channel (see Southward 1980, Southward et
al. 1995, Hawkins et al. 2003, Southward et al. 2005)
where links between climate and ecosystem fluctua-
tion have long been recognised (Southward 1963, Rus-
sell et al. 1971, Russell 1973). Charting changes in spe-
cies abundances, range and assemblage composition is
a first step in understanding the influences of climate
on community structuring and dynamics and the con-
sequences for ecosystem functioning. While many
changes in spatial and temporal patterns have been
described, much less work has been done on the con-
sequences for community and ecosystem processes,
partly because of the experimental intractability of
open offshore ecosystems. Much, however, can be
learned from rocky shores, drawing on both the rich
heritage of field-based experimentation (Connell

1961a,b, Paine 1966, 1979, Raffaelli & Hawkins 1999,
Bertness 2007) as well as extensive long-term data sets
and broadscale baselines, particularly in Europe
(Fischer-Piette 1936, 1955, Crisp & Southward, 1958).
Rocky shores are relatively simple ecosystems; the
ecologies of many species are well known; this makes
them an excellent model system for understanding the
consequences of climate change for community and
ecosystem processes.

In this review, stemming from an invitation to give a
keynote presentation at the 2007 European Marine
Biology Symposium in Kiel, we focus on European
rocky shores where extensive long-term datasets
spanning cooler and warmer time periods exist. The
NE Atlantic region is also experiencing rapid tempera-
ture increases above global averages, in response to
the recent period of climatic warming. In addition,
there is little exploitation (artisanal or commercial) of
rocky shore species, particularly in northern Europe,
which could make detection of climate-related assem-
blage responses difficult. We give a brief overview of
changes detected over the last 60 yr encompassing the
warm 1950s, the colder period between 1963 and the
late 1980s and the recent period of accelerating tem-
perature increase (these changes are discussed in
more detail in Southward et al. 2005). The likely conse-
quences of accelerating climate warming are then
explored at community and ecosystem levels. A sum-
mary of changes in mid-shore assemblage composition
with latitude is given before outlining experimental
work on interactions between key components of the
community which are known to be responding to cli-
mate change. Modelling and quantitative forecasting
are then used to predict community composition and
dynamics in a warmer world and what the conse-
quences will be for community structure and ecosys-
tem functioning. A case is made for the use of rocky
shore species as inexpensive indicators of change off-
shore. Rocky shores also provide a tractable model
ecosystem in which to explore the likely direct and
indirect effects of climate change on marine assem-
blages. We conclude by providing a societal perspec-
tive emphasising the importance of long-term studies
in informing adaptational policies.

2.  CHANGES IN ABUNDANCE AND
DISTRIBUTION OF ROCKY SHORE SPECIES

ON EUROPEAN SHORES

Changes in abundance and range limits in response
to climatic fluctuations have long been recognised on
rocky shores. Yonge (1949) and Wilson (1935) in their
classic books on the seashore, report such fluctuations
including the appearance and disappearance of the
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Fig. 1. Mean annual sea surface temperature (SST) for
1871–2006 off Plymouth (grid square 50–51° N, 04–05° W).
Data from the UK Meteorological Office Hadley Centre
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boreal arctic limpet Tectura testudinalis at its southern
limit on the northeast coast of England. Southward &
Crisp (1954b) observed that the northern species of
barnacles Semibalanus balanoides was much rarer in
the 1950s than in the 1930s in the English Channel.
They suggested that this was caused by climate medi-
ated competition with the southern species Chtha-
malus stellatus, which was becoming more abundant.
This prompted the initiation of long-term observations
which showed that in the southwest of England, the
relative proportions of northern and southern barna-
cles fluctuated with temperature with a 2 yr time lag.
C. stellatus became rarer in the cooler 1960s (South-
ward 1967) before increasing in abundance when con-
ditions began to warm in the late 1980s (Southward
1991, Southward et al. 1995, Southward et al. 2005;
Fig. 2). These time series were largely interrupted by a
lack of funding, but when restarted in the late 1990s
showed that the abundance of southern species had
increased above levels of the 1950s (Fig. 2). Interest-
ingly, coldwater species persisted despite more fre-
quent failures in recruitment (e.g. Jenkins et al. 2000,
Svensson et al. 2005). Resurveys made between 2001
and 2007, largely as part of the Marclim project
(www.mba.ac.uk/marclim) and subsequent follow up
work, has shown range extensions of several southern
species (Mieszkowska et al. 2005). These have oc-
curred at their northern limits in Scotland (e.g. Gibbula
umbilicalis, Mieszkowska et al. 2006) as well as east-
wards into the colder eastern English Channel basin
(e.g. Perforatus perforatus, Herbert et al. 2003; Gib-
bula umbilicalis, Patella ulyssiponensis and Melaraphe
neritoides, Mieszkowska et al. 2005). These species
have breached suspected hydrographic barriers such
as Portland Bill, Dorset and St. Catherine’s Point, on
the Isle of Wight (Crisp & Southward 1958) where

recruitment is low (Herbert et al. 2007), and have
jumped across patches of unsuitable habitat, perhaps
utilising recently constructed sea defences and mari-
nas as stepping stones (Moschella et al. 2005). Further
south in Europe, the southern species of limpet Patella
rustica has extended its range in northern Portugal
past a previous barrier to dispersal as a result of a
relaxation of cold water upwelling (Lima et al. 2006),
the processes driving this range expansion having
been subsequently modelled (Lima et al. 2007a). Other
changes have been detected in this region with south-
ern species becoming more persistent (Lima et al.
2006, Lima et al. 2007b).

Other species have made much smaller advances.
Osilinus lineatus has recolonised areas from which it
had disappeared following the cold winter in 1962/63
and has made small advances from these historic range
limits in Wales and on the English Channel coast
(Mieszkowska et al. 2007). O. lineatus has, however,
increased in abundance throughout much of its range
(Mieszkowska et al. 2007; Fig. 3). Patella depressa has
made only a small range extension from the Isle of
Wight to adjacent sea defences on neighbouring
Hayling Island, Hampshire, but again has increased in
abundance at many sites on the south and southwest
coasts of Britain (Mieszkowska et al. 2005, S. J. Haw-
kins et al. unpubl data; Fig. 4). It has, however, not
recovered to the levels of the 1950s in North Wales.
Limited dispersal capability and suspected specific set-
tlement and nursery ground requirements may be
involved in limiting the advances made by these spe-
cies. Thus, responses are species specific and depen-
dent on life history and other ecological traits.

Although northern species have become less com-
mon (e.g. Semibalanus balanoides and Patella vul-
gata), major range retractions have not been recorded
in the British Isles, except for Alaria esculenta in Ire-
land (Simkanin et al. 2005) and possibly Tectura testu-
dinalis, which has not been found on the south coast of
the Isle of Man for some years (S. J. Hawkins unpubl.
data). Many of these northern species have ranges that
extend further south into southern Europe where
changes are occurring. Changes in assemblage com-
position and distribution of macroalgae have been ob-
served with advances of southern species and re-
traction of northern species (Lima et al. 2007a); S.
balanoides has also disappeared from the coast of
northern Spain (Wethey & Woodin 2008).

Many of the southern species of animals are able to
breed more successfully in warmer years at their
northern range limits (Bode et al. 1986, Bowman &
Lewis 1986, Lewis 1986, Burrows et al. 1992, O’Rior-
dan et al. 2001, P. J. Moore unpubl.). Warmer, more
favourable summers are becoming more frequent and
are probably particularly important in the establish-
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Fig. 2. Long-term changes in northern (Semibalanus bal-
anoides) and southern (Chthamalus spp.) barnacles aver-
aged for several shores on the south coast of Devon and
Cornwall, UK. From Southward et al. (2005). HWN: high
water neaps; MTL: mid tide line; LWN: low water neaps
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ment of viable breeding populations and facilitation of
range extensions at the northern range limit of south-
ern species. Northern species, however, appear to per-
sist, perhaps because they are better competitors than
related southern species (e.g. Semibalanus balanoides;
Connell 1961b, Poloczanska et al. in press) and occa-
sional massive recruitment events can boost their num-
bers, especially in species that spawn coincidently with
the spring phytoplankton bloom when good matching
can occur (Connell 1961b, Hawkins & Hartnoll 1982,
Hansson et al. 2003). Warm springs, however, cause
juvenile mortality of S. balanoides, releasing Chtha-
malus spp. from competition.

3.  COMMUNITY STRUCTURE: LATITUDINAL
GRADIENTS IN PATTERN AND PROCESS

In the British Isles, Ireland and northern France, the
mid-zone (eulittoral) of sheltered shores is dominated
by fucoids which give way to barnacles/mussels and
grazing limpets on more exposed shores (Lewis 1964).
In northern Europe, fucoids extend further out onto
exposed shores; whereas in southern Europe (Spain
and Portugal), fucoids are restricted to extreme shelter
and estuarine refuges (Ballantine 1961). Classic limpet
removal experiments (Jones 1948, Lodge 1948, South-
ward 1964), follow-up work by Hawkins (1981a,b) and
the outcome of major oil spills where all limpets were
killed, have all shown that this pattern is directly deter-
mined by grazing (Southward & Southward 1978,
Hawkins et al. 1992). Subsequent work has confirmed
that grazing prevents the establishment of fucoids
and other algae throughout much of Europe (Jenkins
et al. 2005, Coleman et al. 2006), but wave action de-
termines subsequent survival and persistence (Jonsson
et al. 2006).

On moderately exposed shores of the Isle of Man and
elsewhere in northern Britain, there are complex direct
and indirect interactions between limpets (Patella vul-
gata), barnacles (Semibalanus balanoides), fucoids
(Fucus vesiculosus) (see Hawkins et al. 1992 for
review) and microbial films (Thompson et al. 2004),
which are delicately balanced leading to patchy and
fluctuating distributions of fucoids (Hawkins & Hart-
noll 1983b, Hartnoll & Hawkins 1985). The aggrega-
tion of P. vulgata under adult fucoid patches leads to an
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Fig. 4. Patella depressa. Proportion of P. depressa to total
limpets at sites on the north coast of Devon and Cornwall from
1980–2004. Regression analyses are for each site, at p < 0.01

Fig. 3. Osilinus lineatus. Mean
abundance per minute of timed
search at locations in the north-
ern region of its biogeographic
distribution immediately prior to
the onset of present warming
(1986) and 2 decades later (2002).
From Mieszkowska et al. (2007)
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uneven grazing field, which can prompt subsequent
escapes of juvenile fucoids in areas of reduced P. vul-
gata grazing (Burrows & Hawkins 1998, Thompson et
al. 2004; Fig. 5a). Escapes from limpet grazing are cru-
cial to the establishment of patches and are more likely
among dense barnacles, in particular S. balanoides
(Hawkins 1981a, 1983, Hawkins & Hartnoll 1983b).
Grazing has also been shown to prevent fucoid and
additional macroalgal escapes on barnacle-covered
shores throughout Europe (Coleman et al. 2006). In
southwest Britain and southern Europe, however, a

reduction in grazing pressure is less likely to lead to
algal escapes and dense patches of fucoids as occurs
on more northern shores (Jenkins et al. 2005). These
patterns have been examined spatial statistics (John-
son et al. 1998b) and process simulated using models
(Burrows & Hawkins 1998, Johnson et al. 1998a).
These techniques have also highlighted the impor-
tance of aggregative behaviour of P. vulgata under
fucoid patches in the dynamics of the system as well as
the role of stochastic events such as barnacle, fucoid
and limpet recruitment.
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Fig. 5. Sequence of events on patchy, moderately exposed shore over several years. (a) Shores dominated by Patella vulgata
and Semibalanus balanoides, (b) shores dominated by P. depressa and Chthamalus spp. Adapted from Burrows et al. (1998)
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With climate change, the diversity of grazers will in-
crease in northern Europe. Similarly, large barnacles
such as Semibalanus balanoides capable of extremely
dense settlement will be replaced by smaller and less
rapidly growing chthamalids (Connell 1961b, South-
ward 1991, Poloczanska et al. in press). The rates and
consequences of such changes are explored in the next
section.

4.  FORECAST AND PREDICTION: 
FUTURE STRUCTURE AND FUNCTIONING

Bioclimatic envelope approaches have been used to
forecast future distributions of various organisms (see
Pearson & Dawson 2003 for a review of different cli-
mate envelope methods). These approaches offer a
good first-order approximation, giving the likely outer
limits of potential distribution through changes in the
geographic extent of the potential niche of a species
(Pearson & Dawson 2003). These approaches have,
however, been criticised because they neglect impor-
tant factors such as dispersal, habitat quality and con-
nectivity, and biological interactions (Davis et al. 1998,
Ibanez et al. 2006). In intertidal systems, experimental
approaches have shown that simple models are often
unable to predict patterns in species distributions and
abundance due to the complex nature of physical and
biological interactions across latitudinal gradients (e.g.
Helmuth et al. 2002, Sagarin & Somero 2006). We have
used a climate envelope approach for intertidal climate
indicator species and have found that by using wave
exposure (see Burrows et al. 2008) and February
isotherms, a reasonable predictive capability is possi-
ble (M. T. Burrows et al. unpubl.). The use of long-term
data sets can increase the robustness of modelling ap-
proaches by testing modelled simulations using hind-
cast techniques. These techniques allow modelled data
to be compared against empirically collected data to
test the model fit. Forecasts of future states are also
possible using published climate change scenarios and
our modelling shows the potential for range extensions
of many species. For the English Channel, we pre-
dicted range extensions before they were found in the
field for Gibbula umbilicalis, Patella ulyssiponensis
and Melaraphe neritoides (M. T. Burrows et al. unpubl.
data, S. J. Hawkins et al. unpubl. data).

A more analytical approach is to build biological
interactions into model predictions. The barnacle data
set collected by Southward since the 1950s, experi-
ments on the role of competition (e.g. Connell 1961b),
and good models of the dynamics of open populations
(Roughgarden et al. 1988, Roughgarden et al. 1994,
Connolly & Roughgarden 1999, Connolly et al. 2001)
have enabled a mechanistic approach to the prediction

of future populations (Poloczanska et al. in press).
Detailed path analysis has shown that while tempera-
ture in the early summer explains the abundance of the
northern barnacle Semibalanus balanoides extremely
well, it does not explain the abundance of the southern
barnacle species Chthamalus. This is best explained as
an indirect effect mediated by release from competi-
tion with S. balanoides in warmer years. A variety of
models have been constructed, but the best fit to the
40 yr time series involved a space-limited model simu-
lating interference competition between S. balanoides
and juvenile Chthamalus spp. Having constructed a
workable model, predictions of future trends have
been made using published UKCIP02 (United King-
dom Climate Impact Programme) climate change sce-
narios. The predictions using both high and low future
emissions scenarios suggest that S. balanoides, the
dominant barnacle in the southwest of England during
the 1930s (Moore 1936), will become locally extinct in
the next 25 to 50 yr (Poloczanska et al. in press).

Experiments have also been undertaken to explore
the consequences of changes in species identity of the
major grazers Patella spp. (Moore et al. 2007a, Moore et
al. 2007b). This work confirms that the northern species
of limpet P. vulgata preferentially aggregates under fu-
coid patches (Moore et al. 2007a, P. J. Moore unpubl.
data, see also Hawkins & Hartnoll 1983a,b). If these
patches are removed, significant numbers of P. vulgata
relocate their home scars beneath new fucoid patches
or die (Moore et al. 2007a; Fig. 6). In contrast, the south-
ern limpet species P. depressa does not preferentially
aggregate beneath Fucus patches; if found beneath Fu-
cus, it does not respond when the canopy is removed
(Moore et al. 2007a). Should P. depressa continue to
increase in abundance, then the cycle of aggregative
behaviour typical on shores such as the Isle of Man
(Hartnoll & Hawkins 1985) where P. vulgata is the only
species, will not occur. Thus, the shore is likely to be
less patchy (Johnson et al. 1998a) and also less dynamic
(Burrows & Hawkins 1998). Furthermore, smaller and
slower growing barnacles (Chthamalus spp.) are less
likely to promote fucoid escapes typical on Semi-
balanus balanoides dominated shores (Fig. 5b).

Although so far untested, the addition of extra graz-
ers such as trochids (Gibbula umbilicalis and Osilinus
lineatus) and decapods (Pachygrapsus marmoratus)
will make escapes of Fucus and other algae less likely.
Greater physical stress will also slow early growth of
fucoids reducing the probability of escapes (Thompson
et al. 2004). Thus, shores are likely to have less primary
producing fucoids which will be increasingly restricted
to sheltered shores. Mid-latitude shores such as those
in southern Britain and Brittany, France may resemble
those in Portugal in the foreseeable future. Primary pro-
duction will decline and there will be less export of
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macroalgal detritus into coastal ecosystems. Secondary
production will also be reduced as Chthamalus spp.
grows much more slowly than Semibalanus balanoides.
Thus, climate change is likely to have considerable con-
sequences on the functioning of coastal ecosystems.

There are, however, some surprises in store due to
both lags in responses of different species and idiosyn-
cratic trait-dependent differences in the role of spe-
cies. For example, the southern species of hermit crab
Clibanarius erythropus that previously colonised
Britain during the warm period experienced in the
1950s has yet to return (Southward & Southward 1977,
1988, S. J. Hawkins pers. obs.). The recolonisation and
recovery of C. erythropus may have been further
slowed by interaction with pollution (Southward &
Southward 1978). The English Channel has been sub-
jected to repeated pollution incidents (e.g. the tankers
‘Torrey Canyon’, ‘Amoco Cadiz’) which not only deci-
mated British populations, but also reduced potential
sources of recruits in northern France. Tributyl tin
(TBT) pollution also reduced dogwhelk populations
with recovery only occurring in the late 1990s, follow-
ing the ban on TBT-based paints on smaller vessels.
Thus, the favoured shell of C. erythropus also became
rarer. In addition, northern species which retreated in
the 1950s such as Alaria esculenta, never really recov-

ered during the subsequent cold period of the 1960s,
1970s and early 1980s. Moreover, recent work has
shown that the southern species of limpet, Patella
depressa, does not control macroalgal abundance to
the same degree as the northern species P. vulgata
(Moore et al. 2007b). Fucoid escapes were able to
occur in enclosures containing just P. depressa as the
grazing activity of this species was significantly re-
duced during early spring to late summer when their
gonads were full. During this time, Fucus germlings
settled on the shore and were able to grow to a size less
vulnerable to the grazing activities of P. depressa,
which increased in autumn (Moore et al. 2007b). In
contrast, in enclosures with only P. vulgata, no Fucus
escapes were found and there was no reduction of
grazing activity during the settlement period of Fucus.
These results were surprising and indicate that as spe-
cies identities change in response to climate change,
there could be considerable impacts on the way spe-
cies interact due to subtle differences in their behav-
iour or physiology. Changes in the strength or direction
of species interactions could fundamentally alter
assemblage composition with consequences for eco-
system functioning. The changes we have described
are likely to have consequences for the balance and
dynamics of fucoids on European rocky shores and
hence on whether a particular shore is a net importer
or exporter of material. Such changes in fucoid cover
will also impact biodiversity given the number of
mobile and sessile species that live in and among
fucoids (Thompson et al. 1996).

5.  FUTURE WORK: PATTERN, PROCESS AND
PREDICTION

Although there is a rich heritage of monitoring
responses of species to climate fluctuations in the NE
Atlantic, there are still many areas that need further
work. The underlying mechanisms driving change that
link individual ecophysiology with reproductive suc-
cess and hence population dynamics are not well
understood (but see Sagarin & Somero 2006). Knowl-
edge of the effect of species interactions on species
responses to climate change is still limited (but see
Helmuth et al. 2006, Moore et al. 2007a, Moore et al.
2007b, Blight & Thompson 2008). Work to date indi-
cates that species interactions will alter under future
climate change scenarios, with implications for com-
munity structure (Moore et al. 2007a, Moore et al.
2007b, Sanford & Swezey 2008) and ecosystem func-
tioning. In addition, most field and laboratory experi-
ments investigating responses of species to climate
change have manipulated mean values in an environ-
mental variable (e.g. temperature) with few studies
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manipulating the amount of variability in environmen-
tal conditions (Benedetti-Cecchi 2003). This is surpris-
ing considering that extreme events are predicted to
become more frequent with climate change (IPCC
2007) and that the incorporation of spatial and tempo-
ral variance is vital for understanding ecological pro-
cesses (Benedetti-Cecchi 2000, 2003, Benedetti-Cecchi
et al. 2005). 

As with many components of marine biodiversity,
rocky shore species are showing changing abundance
and geographic range in response to climatic warming.
At present, more advances than retreats have been
recorded. In northern species, this is perhaps due to
the greater reproductive output of single brood spring
spawners and greater competitive ability. This hypoth-
esis, however, remains to be tested. It must also be
remembered that more studies have been made in
regions where species reach their northern limits than
in lower latitudes where many southern limits are
located, potentially skewing evidence. Assemblage-
level monitoring needs to be undertaken to measure
the effects of changes in the balance of canopy algae
and suspension feeders over the next 50 yr and hence
the potential contribution of rocky shores to inshore
productivity. In addition, experimental studies on pop-
ulation- and community-level processes need to be
undertaken to enable modelling techniques that pro-
vide better predictions. Better understanding will
enable progression from mere forecasts to better pre-
dictive modelling and future studies under different
climate scenarios. Differences between modelled and
actual distributions can then be used to generate
testable hypotheses about the processes setting geo-
graphic limits, particularly the interaction of ultimate
factors such as temperature regime with proximate
factors such as habitat quality, connectivity of habitat
patches, dispersal capability, the porosity of hydro-
graphic barriers such as major headlands and the role
of positive and negative biological interactions.

Rocky shore species have long been known to pro-
vide excellent sentinels for detecting changes in biodi-
versity in other systems that are less accessible and
more expensive to survey, such as offshore systems
(Lewis 1986, Southward et al. 1995, Southward et al.
2005). Rocky shores also provide a tractable system for
field experiments to explore the likely community
structuring and ecosystem functioning consequences of
changes in species distributions and assemblage com-
position. Existing time series need to be continued and
resurveys made on a European scale to fully exploit the
classical baselines provided by Fischer-Piette, Crisp
and Southward (e.g. Fischer-Piette 1936, 1955, Fisher
1943, Crisp 1950, 1964, Southward 1951, 1958, 1967,
1980, 1991, Southward & Crisp 1952, 1954a,b, 1956,
Crisp & Knight-Jones 1954, Fischer-Piette & Prenant

1956, 1957, Crisp & Southward 1958, Crisp & Fischer-
Piette 1959, Fischer-Piette & Gaillard 1959, Southward
et al. 1995, Southward et al. 2005).

6.  INFORMING ADAPTATION

There are major policy implications of climate
change in marine ecosystems from a societal perspec-
tive. The inertia of the climate system means that soci-
ety must live with continuing climate change over the
next 50 yr or so (IPCC 2007), until mitigation measures
and new technologies enable a switch from a carbon-
based economy. Adaptative policies need to be based
on real-time monitoring of changes to distinguish
actual trends from mere fluctuations. Knowledge of
future states would also enable a more precautionary
approach to managing the interactions of global
change and local- and regional-scale impacts.

Comprehensive, broadscale and long-term observa-
tions are essential for a sufficiently accurate knowledge
of the state of our seas and coasts to allow adaptive
management. Sustained observation/monitoring alone
is not enough: integrative experimental studies are re-
quired to understand the mechanisms involved in indi-
vidual and population responses to climate change.

Adapting to climate change requires disentangling
human-driven global change of low amplitude and fre-
quency from natural temporal and spatial fluctuations
as well as human impacts acting at regional (e.g. over-
fishing, eutrophication, non-native species) and local
scales (aquaculture, habitat loss due to inappropriate
coastal development, point-source pollution). Some
local impacts can scale up to whole coastlines, such
as that of low-crested sea defences (Airoldi et al.
2005) resulting in regional scale habitat alteration and
loss. Adaptative policies must focus on managing the
interactions of global change (which we cannot slow in
the short to medium term, i.e. next 50 yr), with drivers
that society can influence and ameliorate, such as
overexploitation, pollution and habitat degradation
and loss.
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