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Objectives and background of the 

study:

(1) Review status of current research and understanding of 

issues

(2) Identify existing research efforts and key research 

groups

(3) Identify significant gaps and/or areas of disagreement

(4) Recommend scope, time frame, and costs for 

addressing gaps.



Environmental Loadings and Impacts 

are related to:

*Standing stock: seasons, densities, sizes 

of fish

*Production: seasons, densities of fish 

*Conversions: Physiology, feeds 

*Quality/Quantities of feed: seasons, 

densities

*Temperature/3 D Hydrodynamics
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Flow of Nutrients in Salmon Cage Aquaculture



Feed quality and quantity issues

Feed use increases with fish size; feed composition changes

Today = Proteins 35-50%, Lipids 25-40%

Protein levels exceeded minimal amino acid requirements (Lovell, 2002)

Protein levels reduced “protein sparing” with lipids (Wilson, 2002)
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Typical Atlantic salmon feed for grow out sized (>2000g) fish

Proximate 
composition
(%)

Protein min) 39

Fat (min) 33

Carbohydrates (max) 10

Fibre (max) 1.5

Phosphorus (approx.) 1.2

Minerals (max) 6.8

Moisture (max) 8.5
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Intake and Solid Nutrient Waste
[Feed loss; fines; fecal materials]

Fines (too small to be eaten; all is essentially waste to the environment)

*extrusion reduced amount; today due to amount of handling

*heterotrophic food web?

Feed loss

*20% (Beveridge, 1987) -- now between 3% (Cromey et al., 

2002) and 5% (Bureau et al., 2003) Therefore, intake 

is ~95-97% of feed introduced
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Nutritional mass balance approach to estimate fecal mass and
composition (using a typical Atlantic salmon feed for grow out sized
(>2000g) fish)

Proximate 
compos.
(%)

Digest
(%)

Amount
Digested
(%)

Amount 
in feces 
(%)

Protein min) 39 90 35.1 3.9

Fat (min) 33 95 31.7 1.7

Carbohydrates (max) 10 60 6.0 4.0

Fibre (max) 1.5 10 0.15 1.3

Phosphorus (approx.) 1.2 50 0.60 0.6

Minerals (max) 6.8 50 3.5 3.4

Moisture (max) 8.5

Total dry  

fecal ~ 15%

G. Reid



~95% of feed is consumed  

~5% lost to the environment

Consumed feed produces ~15% feces

~85% soluble waste



Physical Properties of Solid Wastes

Settling velocities

Pellets – high and not widely variable

Fecal matter – low and highly variable (3.2-6.4 cm/sec.)
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Soluble Nutrient Wastes

Nutrients digested (absorbed through the intestinal wall) are 

excreted because they are catabolized (converted) or, the 

amount digested exceeds metabolic requirements

Soluble nutrients dissolve in water; their initial dilution and 

transport are a function of hydrodynamics; persistence is 

determined by uptake by the marine planktonic ecosystem

Protein is metabolized and discharged as ammonium NH4
+

through the gills and to a lesser extent as urea in urine.

Phosphorus is discharged at PO4
+

Lipids are metabolized to carbon dioxide and water



Protein Feed 

Composition (%)

Digestibility 

(%)

Amt 

Digested 

(%)

Carcass 

Composition 

(%)

Retained 

in Growth 

(1.1 FCR) 

Soluble 

Nitrogen 

Loading (%)

39 90 35 18.5 16.8 2.9



Improvement in world FCR 

from 1.7 to 1.3 from 1993 to 

2003



Norway 2005 - total production of salmon
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Comparisons of salmon wastes with municipal wastes

QUALITY: Salmonids do not produce fecal coliform 

bacteria

Municipal wastes have severe pathogenic and chemical 

concerns (coliforms and ~200 identified contaminants)

Salmonids have been known to produce contaminants, 

but quantities are very low; and salmonids can be grown 

without contaminants (IMTA)

Compare loadings for individual contaminants and 

compounds



Chapter 2: Impacts on pelagic ecosystems

Dr. Yngvar Olsen, University of Science and Technology, 

Norway



Norway 2005 - Standing biomass of salmon
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Norway 2005 - Production of salmon
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Norway 2005 - Feed for salmon
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Production of typical Norwegian farm

Month
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Phosphate (PO
4
) release from 

typical farm
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Large particles sink rapidly to the seafloor, 

consumed by fish or other benthic organisms

Small particles of feed and faeces are immediately 

available for mussels and zooplankton

Not available for phytoplankton and macroalgae

Immediately taken up by phytoplankton (food for 

mussels) and macroalgae. The growth response is 

delayed (some days).

Stable N and P components, available for 

phytoplankton on long time scale

Consumed by bacteria

Particulate 

N and P

Dissolved 

organic

N and P

Dissolved 

inorganic

N and P

Fate of the principal nutrient components 

released from salmon cages

Y. Olsen



If eutrophication occurs = Magnitude of its concentration and if it‟s 

“limiting” in an environment

Leibig‟s Law of the Minimium

Marine = nitrogen

Freshwater = phosphorus

Light



Chain reaction, following nutrient input

Increased nutrient concentration (DIN, DIP)

Nutrients taken up by algae (PON, POP)

Increased primary production

Increased biomass

Accumulated production, 1 -2 days 

delay relative to production, 

accumulate “downstream”

Relatively slow, 2 – 5 days before 

response

Immediate reaction, hours

The phytoplankton biomass response following enhanced nutrient 

supply from a point source draining to dynamic waters has a delay 

of 3-7 days and will therefore be realised far downstream of the 

farm
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Volumetric loading rate of nutrients 
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Chapter 3: Pelagic nutrient and ecosystems impacts of 

salmon aquaculture in Chile, with emphasis on 

dissolved nutrient loading and harmful algal blooms

Dr. Alejandro Buschmann, Universidad de los Lagos, Chile

Chapter 4: Salmon aquaculture and harmful algal 

blooms (HABs)

Dr. Stephen F. Cross, University of Victoria, British 

Columbia, Canada



• Scottish Executive Environmental Group (SEEG)

Reviewed 650 scientific papers and made regional 

comparisons

Many Harmful Algal Blooms (HABs) clearly attributed to 

regional processes that occur well outside of the direct 

influences of salmon farms

No indication that HABs were developed, sustained by 

nutrients from salmon farms

Inadequate waste composition; receiving water 

qualities; oceanographic conditions

Harmful Algal Blooms



Chile: hydrodynamics/tidal currents poorly 

understood, nutrient impacts downstream?

Seaweeds detect nutrient impacts better than 

instruments deployed infrequently

Induction of HABs? Some laboratory evidence in 1500 

L tanks; Vergara (2001) limited field study



Effects of salmon culture in southern Chile 

(Soto & Norambuena 2004)





• Many Harmful Algal Blooms (HABs) clearly attributed 

to regional processes that occur well outside of the 

direct influences of salmon farms.  

• At densities of salmon farms in BC and Norway, 

nutrient loading of farms might not alone be sufficient 

to initiate and sustain HABs. 

BUT, in Chile, farms are more dense – little/no research.

Harmful Algal Blooms



Chapter 5: Nutrient impacts of salmon aquaculture on 

Chilean lakes

Dr. Jose Iriarte, Universidad Austral de Chile, Chile



Diversity of habitats:

Fjords

Estuaries

Lakes

Rivers

Bays

Channels

Islands

Freshwater input

Low temperature

Low Inorganic 

nutrients

Oceanic water

High nutrients

X Lake District

>80% national salmon 

production
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Lake Llanquihue 



Diverse Ecosystems

Lake Llanquihue
–one of the largest lakes in Chile

–Deep, oligotrophic, volcanic origin

–Tourist hot spot

–Recreational area (sport fishing, etc.)

–Salmon farming (water and land-based)

–Several cities surrounding

Lake Natri
–Smaller than Llanquihue

–Shallow, eutrophic

–Salmon farming (smolt production)



Chilean Lakes: Water column
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Chilean Lakes: water column
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Conclusions and 

Research Needs



Scientific concept for assessing impacts of 

nutrients in water column ecosystems

Two main mechanisms are important for the assimilation capacity of 

water column ecosystems:

Nutrient assimilation by the planktonic food web components, with  

trophic transfers of energy and materials (e.g., nutrients) to  higher 

trophic levels.

There is a critical upper nutrient loading above which the water column 

ecosystem looses its integrity, resulting in algal blooms

Hydrodynamic mediated dilution of nutrients and organisms at 

production sites and their surrounding water masses.

Nutrient loads are diluted, the potential negative effects of high nutrient 

input are mitigated, because the critical level is not reached



The three most important factors determining the impact 

of salmon farming on water column nutrients, water 

quality, and pelagic ecosystems are the: 

1. loading rate of inorganic nutrients, especially nitrogen for 

marine systems and phosphorus for freshwater ones; the 

hydrodynamics; and the water depths of cage sites,  

2. morphometry and topography (degree of “openness”) of bays 

and the nearshore coastal areas,  

3. stocking density of fish (local scale) and the density of fish 

farms (regional scale).



Nutrient Impacts of Salmon Aquaculture 

on Chilean Lakes

• Preliminary reports indicate Chiloé lakes with salmon 

farming had impacts, while Northern Patagonian 

lakes including Lakes Llanquihue, Rupanco, 

Puyehue, Yelcho did not.

• Chiloé lakes were impacted because of small 

size/volume, shallow depth and low water exchange 

rates and intensive farming practices.
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Cage
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Fish Harvest
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31 %

0.15 %

Cage

Feed
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Key Research Needs

Sophisticated, connected modeling 
(note advances, next slides) 

Further research on fecal mass 

faction settling rates and fates in

marine ecosystems



Advanced 3D hydrodynamic 

modeling to estimate volumetric 

loading rates and spreading 

patterns of excess nutrients; 

particularly important for 

nutrient assessments where 

multiple farms are in the same 

water body…
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Volumetric loading rate of nutrients 
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Key Research Needs

Continued development of nutrient dense feeds 

(continue to decrease fines and to improve FCR‟s)

Further research on improving the digestibilities of feeds

Much more research needed on aquaculture loading 

within the context of cage densities, 

esp. for Chile where the research database 

appears weak (Reloncavi estuary)



Reloncavi Estuary

•Narrow and deep

•High concentration of 

salmon farming

•Hypoxia events in 

water column

•High freshwater 

discharge from 3 rivers

•Land use

•Hydroelectric power 

•installations



Key Research Needs

Can HABs be related in the field to wastes 

from salmon farms?

HAB species near salmon farms

Triggers



Other Key (Interim) Research Needs

Can nutrient conditions within farming areas promote 

establishment of new HAB seed areas?

How do the variations of nutrients from farm wastes 

affect the population dynamics of the various HAB spp?

How does phytoplankton community structure, inter-specific 

competition and uptake preferences for 

available nutrients affect „triggers‟ for HAB blooms?

How does farm site physiography and oceanography 

affect nutrient availability to HABs?



Other Recommendations

Chile Scientific/Monitoring Capacity 

540 references – 12 in Chile

Ecological Aquaculture/IMTA
The evolution of the blue revolution!

1. Commercial Scale Collaborative SEA (Sustainable 

Ecological Aquaculture) Labs 

Partnering Universities/Governments/Industries/NGOs 

to develop learning communities



Sustainability

Planning
Social Ecology

Aquaculture

Ecosystems

IMTA

Ecological 

Aquaculture


