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a b s t r a c t

Algae is a very promising source for renewable energy production since it can fix the greenhouse gas
(CO2) by photosynthesis and does not compete with the production of food. Compared to microalgae,
researches on biofuel production from macroalgae in both academia and industry are at infancy for
economically efficient and technological solutions. This review provides up to-date knowledge and
information on macroalgae-based biofuels, such as biogas, bioethanol, biodiesel and bio-oils respectively
obtained from anaerobic digestion, fermentation, transesterification, liquefaction and pyrolysis techni-
que methods. It is concluded that bioethanol and bio-oils from wet macroalgae are more competitive
while biodiesel production seems less attractive compared to high lipid content microalgae biomass.
Finally, a biorefinery concept based on macroalgae is given.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Methods to convert biomass to competitive biofuels are increas-
ingly attractive as fossil hydrocarbons are likely to become scarce and
costly. Interest has now been diverted to the third-generation biomass

like algae, since the first-generation feedstock (edible crops, sugars and
starches) are under serious controversy considering the competition
between food and fuel feud [1] and the second-generation biomass
(lignocellulosic biomass) are limited by the high cost for lignin
removal. Algae is a very promising source for renewable energy
production since it can fix the greenhouse gas (CO2) by photosynth-
esis. The average photosynthetic efficiency is 6–8% [2] which is much
higher than that of terrestrial biomass (1.8–2.2%). Algae can be
cultivated on unproductive or abandoned land [3], and it is also very
efficient in utilizing the nutrients fromwaste water including nitrogen
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and phosphorus [4] due to its rapid growth rate and the nutrients can
be recycled back to the soil by fertilizing the waste by-products.

Microalgae and macroalgae investigated as potential fuel
sources are the two groups of algae [5]. Productivity, scalability
and a continuous supply of biomass are critical factors in selecting
biofuel feedstock. Anaerobic digestion, fermentation, transester-
ification, liquefaction and pyrolysis can convert algal biomass
into biofuels, such as biogas, bioethanol, biodiesel and bio-oils.
Researches on microalgae (a lipid-based biorefinery platform)
biodiesel are dominated over the pass years as they have higher
per hectare yield (158 vs. 60–100 t of macroalgae) [6], and are
easier to be degraded due to their low carbohydrate content [7]
whilst the poor returns in biomethane production [8] and energy
balance [9] partly limited it. According to a Life Cycle Assessment
[10], macroalgae can generate a net energy of 11,000 MJ/t dry algae
compared to 9500 MJ/t relevant to micro-algae gasification. Com-
pared to microalgae, macroalgae is multicellular plant and pos-
sesses plant-like characteristics, making its harvesting more easily
[11] and it mainly consists of carbohydrates which are good
candidates for biofuel production such as biogas, bioethanol and
bio-oils. Biofuel production frommacroalgae in both academia and
industry are at infancy for economically efficient technological
solutions [12].

Macroalgae are classified into three major groups based on
their photosynthetic pigmentation variations: red (Rhodophyta),
brown (Phaeophyta) and green (Chlorophyta) [13,14]. Globally, red
is the most species-rich group (6000) followed by green (4500)
and brown (2000) [15]. Brown algae mainly grow in tempered to
cold or very cold waters, and red algae grow especially in inter-
tropical zones. The green algae grow in all type of water environ-
ment [16]. Macroalgae is cultivated at present for food production,
fertilizers and hydrocolloid extraction in Asia with China, Korea,
Philippines and Japan accounting for about 72% of global annual
production [17]. The productivity for macroalgae ranges from 150 to
600 t per hectare per year fresh weight and the total worldwide
production reaches 12 million tonnes dry matter/year [18]. However,
production of biofuels from macroalgae biomass receives less atten-
tion. Currently, the only industrial product of significance from
macroalgae is hydrocolloids extraction. However, there are many other
opportunities for extraction of high-value niche products from macro-
algae. There are several reviews on biofuel production from algae, but
they focused on microalgae utilization [16] or only one technique like
biogas production from macroalgae [20]. The multiple biofuels pro-
duction from macroalgae in a biorefinery concept has not been
documented. Therefore, the objective of this review is to provide up
to-date knowledge on macroalgae-based biofuels, such as biogas,

bioethanol, biodiesel and bio-oils from the aneorobic digestion,
fermentation, transesterification, liquefaction and pyrolysis technique
methods and give the perspectives on macroalgae-based biorefinery
technologies.

2. Chemical composition of macroalgae

Macroalgae contains generally only 10–15% dry matter [17]. The
dehydrated macroalgae consists of large amounts of carbohydrates
(approximately 60%). Cell wall components of macroalgae are the
major sources of carbohydrates. Some contains cellulose and/or
starch (especially green and red). The biochemical composition
and ash content have seasonal variations. For example, the content
of storage carbohydrates reaches the maximum value in autumn
[14]. Table 1 shows the main composition of macroalgae and
microalgae. Mannan, ulvan, carrageenan, agar, laminarin, manni-
tol, alginate, fucoidin, fucose and uronic acid [15] make macro-
algae different from microalgae and lignocellulosic biomass.
Additionally, lignin content, as low as 0.03 g/kg dry matter [26],
offers suitability for downstream processing such as anaer-
obic digestion or the fermentation process [27] without costly pre-
treatment.

Red macroalgae is mainly composed of polymers of modified
galactose: carrageenan and agar. Palmaria palmata [28] contains
the highest carrageenan with the concentration of 354 mg/g by
evaluating 20 macroalgaes and such a high carrageenan content
makes the high yield of bioethanol feasible. Brown algae, the
first cultivated algae worldwide, on the other hand, is rich in
alginate and contain large quantities of laminarin, important
quantity of mannitol in autumn and few standard sugars [21].
The brown and red algae show a low lipid (less than 5% [29,30])
composition which percentage is too low to be converted to
biodiesel. Some species of green algae are rich in cellulose
(Valoniatypes up to 70% cellulose [16]) and most are rich in
starch (20–30%). Besides, macroalgae have relatively higher
alkali metals and the halogen contents (0.5–11%) than those of
terrestrial biomass (1–1.5%) [24]. The nutrient content (N, P)
depends primarily on macrophyta morphology and then on
environmental nutrient pollution [22].

3. Biofuels production from macroalgae

The productions of biofuels from macroalgae by biochemical
and thermochemical technologies are technically possible through

Table 1
Macroalgae and microalgae composition (w/w% dry biomass) for a variety of species.

Macroalgae Microalgae

Green algae Red algae Brown algae Starch
Total carbohydrate

Polysaccharide Mannan Carrageenan Laminarin (up to 35 [24]) Arabinose
Ulvan Agar (up to 52 [22]) Mannitol Fucose
Starch Cellulose Alginate (up to 40 [25]) Galactose
Cellulose (38–52) Lignin Glucan Glucose

Cellulose Mannose
Rhamnose

Monosaccharide Glucose Glucose Glucose Ribose
Mannose Galactose Galactose Xylose
Uronic acid Agarose Uronic acid

Representative Ulva lactuca [21] Gelidium amansii [23] Laminaria japonica [21]
Carbohydrates 54.3 83.6 59.5
Lipid 6.2 0.9 1.5
Protein 20.6 12.2 30.9
Ash 18.9 3.3 8.1
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a variety of pathways. Biomethane, bioethanol, biodiesel and bio-
oils can be obtained by different conversion methods including
anaerobic digestion, fermentation, transesterification, liquefaction
and pyrolysis processes which are outlined in Fig. 1.

3.1. Biogas

Biogas production is a long-established technology. The conven-
tional feedstocks for biogas production are agricultural crops, animal
wastes, sewage sludge, some house refuses and so on. There are
numerous active biogas installations, from large-scale ones to small
ones fed with various feedstocks [32]. The water content in macro-
algae is higher than in terrestrial biomass (80–85%), making them
more suitable for microbial conversion than for thermochemical
conversion process. Biogas production from macroalgae is more
technically-viable than for other fuels since all the organic components
(carbohydrate, protein, etc.) in macroalgae can be converted into
biogas by anaerobic digestion (AD), and also the low lignocellulose
content make their biodegradation easier than their relatives micro-
algae to produce significant levels of biogas [33–35]. Methane yields
are related to both ash content and the level of storage sugars
and varies with biochemical composition. Table 2 summarizes the
methane yields from different macroalgae, and the methane yields of
macroalgae range from 0.12 to 0.48 m3 CH4/kg VS.

There are several challenges for biogas production from macro-
algae: (a) the nitrogen content in some algae are high, resulting in
inappropriate C:N for microbial growth and also the high levels of

ammonia are toxic to methanogens; (b) physical or chemical pre-
treatment is needed to break down cell walls and make the
organic matter in the cells more accessible; (c) alkaline metals
inherent in macroalgae can inhibit the anaerobic digestion process
[32]; To get higher yield of CH4, the optimal C:N (20–30) ratio is
necessary. When C:N is lower than 20, the imbalance ratio will
lead to increased levels of ammonia in the bio-reactor which can
eventually decreases the rate of methane production [47]. The C:N
of macroalgae roughly equals to 10 and the C:N of straw is close to
33, while the C:N of wood is up to 244 [48]. Co-digestion of high
protein content macroalgae biomass with a co-substrate that has
high C:N ratio can balance carbon and nitrogen ratio. Blends of
macroalgae and straw will have C:N ratios more conducive for
biogas production [43]. Yen [47] found that co-digestion of
macroalgae and waste paper resulted in higher biogas yields.
Besides, the increase of methane production rate by 26% was
reported by co-digesting macroalgae (Ulva sp.) with manure and
waste activated sludge (ratio 15% U: 85% S) [49]. Furthermore,
other empirical regularities can also be adopted from the AD
process of sewage sludge [50] as both of the biogas sources have
complex composition thus appropriate pre-treatment is necessary
and some common inhibitors like ammonia, alkaline metals and
volatile fatty acids during the biogas production should not been
neglected.

Hydrolysis is the first and rate-limiting step [50] of macroalgae AD
process for biogas production. The intracellular polysaccharides, cellu-
loses and proteins are not freely accessible to the inoculum. The

Table 2
Effectiveness of biogas production with the use of macroalgae as a substrate in methane fermentation processes.

Groups Macroalgae Pretreatment Quantity of methane Reference

Green Ulva lactuca Macerated 271 L CH4/kg VS [36]
Ulva lactuca Macerated 250 L CH4/kg VS dried [37]

183 L CH4/kg VS fresh
Ulva biomass Ground 0.43 L CH4/g COD removed [38]

Red G. vermiculophylla Maceration 48179 L CH4/kg VS [39]
Brown Laminaria sp. Mechanical 430 cc gTS�1 [40]

Laminaria sp. 22 m3 CH4/t wet [41]
S. latissima Ground 268 L CH4/kg VS [42]
Macrocystis pyrifera Two-phase digestion system 117.3 CH4/kg VS dried [43]
Durvillea antarctica

Green, brown Ground 256 CH4/g VS green [44]
179 CH4/g VS brown

Brown red and green Ten algae Average 0.20 L CH4/g VS [45]

Thermochemical
liquefaction

Ethanol,
acetone,
butanol

Macroalgae
biomass

Biochemical
conversion

Thermochemical
conversion

Anaerobic
digestion

Fermentation
Extraction of
hydrocarbons

Methane
hydrogen

Biodiesel ,
value added

products

Bio-oil Oil and char
coal

Pyrolysis

Fig. 1. Biochemical and thermochemical biofuel conversion processes from macroalgae, referred to [35].
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theoretical methane production potential of Gracilaria is 0.40 m3 CH4/
kg VS [51] but experiment only determined 0.18270.023 m3 CH4/kg
VS due to the limitation of hydrolysis [52]. In order to break down cell
walls and liberate the organic matter needed for microorganisms, pre-
treatment processes (milling, maceration, thermal or extrusion) for
efficient biogas production are necessary. Milling was reported to
reduce the digestion time by 23–59% and cause an increase in biogas
yield by 5–25% of most lignocelluloses [53]. Maceration pre-treatment
of Ulva sp. can increase the surface area, which make the substrate
more accessible and cause an increase of 22% methane production
[52]. Vivekanand [43] showed that methane yield increased up to 20%
after the Saccharina latissima biomass treated with steam explosion at
130 1C for 10 min. The significant amount of saline (sodium, potas-
sium, calcium andmagnesium), halogens [54] and sulfur [55] may also
restrict the growth and productivity of the anaerobic microorganisms

and are likely to cause fouling issues [29]. Pre-treatment in both water
and weak acid can remove a significant proportion of the mineral
matter. Pre-treatment of 10 g of algae in 50 cm3 of 2.0 M HCl for 6 h at
60 1C removed over 90% of Mg, K, Na, Ca, and also a large proportion of
the trace mineral matter [55].

3.2. Bioethanol

Bioethanol and synthetic biodiesel from algal feedstock are two
liquid algal transportation biofuels. Comparing to edible and
lignocellulosic biomass materials, algal biomass is gaining wide
attention as an alternative renewable feedstock for the production
of bioethanol [12,21,28]. Previous researches on fuels and energy
from algae only focused on the production of methane [33,51,52],
and methanol [12]. Macroalgae has high content of carbohydrates
and little lignin [56] and thus are suitable to be used as substrate
in fermentation process for bioethanol production after hydrolysis
process. Fermentation by B. Custersii produced 11.8 g/L ethanol
from 90 g/L sugar in a batch reactor, and 27.6 g/L ethanol from
72.2 g/L sugar in a continuous reactor [57]. Also, results from Inn
[58] concluded that E. Cottonii could be a potential feedstock for
bioethanol production. The technological processes of bioethanol
from macroalgae are similar to the common ethanol production as
Fig. 2 shows.

Just as biogas production from macroalgae, pre-treatment in the
first stage also play an important role in the following

Macroalgae

Pre-treatment:

Mechanical
Acid etc.

Hydrolysis /
Saccharificaon Fermentation

Ethanol

Value-added
byproducts

Stage Stage Stage

Remove foreign objects

Ι ΙΙ ΙΙΙ

Fig. 2. The technological processes of bioethanol from macroalgae.

Table 3
Prime polysaccharides hydrolyzed and suitable fermenting enzyme of three families of Macroalgae.

Class Carbohydrate Chemical construction Degradation enzymes [17,70]

Red algae κ-Carrageenan Saccharomyces cerevisiae

Cellulose Saccharomyces cerevisiae

Brow algae Alginate Escherichia coli

Laminarin Pichia angophorae
Kluyveromyces marxianus
Pacchysolen tannophilus

Mannitol Zymobacter palmae
Pichia angophorae
Escherichia coli
Escherichia coli KO11

Green algae Starch Saccharomyces cerevisiae

Cellulose Saccharomyces cerevisiae

Common Galactose Brettanomyces custersii
Saccharomyces cerevisiae

Glucose Saccharomyces cerevisiae
Brettanomyces custersii
Clostridium
Escherichia coli KO11
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saccharification and fermentation procedure thoroughly. The car-
bohydrates including laminarin [59], carrageenan and alginateas as
shown in Table 3 are not freely available to be hydrolyzed.
Mechanical or acid pre-treatment can increase the reaction area
and make locked sugars in the structural polysaccharides more
accessible to hydrolytic enzymes [60], which results in the accel-
eration of the hydrolysis. Acid pretreatment is one of the shared
methods to attain high sugar yields from lignocellulosic biomass.
Red algae, Palmaria palmata, mainly containing carrageenan,
released glucose, galactose and sugars by acid hydrolysis (0.4 M
H2SO4 at 125 1C for 25 min) and then were fermented to ethanol
[28]. Kappaphycus alvarezii [61] biomass was saccharified at 100 1C
in 0.9 M H2SO4 and the best yields for saccharification were 26.2%
and 30.6% (w/w) at laboratory (250 g) and bench (16 kg) scales,
respectively. Horn et al. [62] reported that washing macroalgae in
acidic water (0.09 M HCl in H2O) at 65 1Cenhanced hydrolysis
of laminarin, while another report [63] showed the contrary
results.

Although acid hydrolysis of biomass was reported to be the
most cost-effective method to date, glucose decomposition
occurred during the hydrolysis [64]. The by-products during acid
hydrolysis including 5-hydroxy-methyl-furfural and levulinic acid,
had a profound impact on the efficiency of ethanol production
[65]. Compared to acid hydrolysis of carbohydrates, enzyme
hydrolysis also faces several challenges such as difficulty in
recovering the enzyme from the products and requiring long
hydrolysis time [58]. Recently, saccharification is often enhanced
by introduction of two-step process of biomass treatment: combi-
nation of acid and enzymatic pretreatment [66]. The maximum
glucan content of 29.10%, which was four-fold higher than that of
the raw Saccharina japonica, was obtained by pretreatment with
sulfuric acid of 0.06% at the temperature of 170 1Cfor 15 min [67],
and then followed by enzymatic pretreatment. The total biomass
digestibility reached to 83.96%. Another study [21] reported that
7.0–9.8 g/L ethanol was produced from 50 g/L sugar in dilute-acid
pre-treated biomass of brown algae L. Japonica by simultaneous
saccharification and enzymatic fermentation. At present, it is
necessary to get proper enzymes for high hydrolysis efficiency,
and also recovery of enzyme [68] and re-use of enzymes in
biorefining processes holds promise. Membrane separation has
been demonstrated as an effective way for the recovery of enzyme.

After effective hydrolysis step, most of the polysaccharides and
disaccharides become monosaccharides as shown in Eq. (1):
taking sucrose as an example, invertase enzyme can catalyze
sucrose into glucose and fructose and then Saccharomyces cever-
esiae, converts glucose and fructose into ethanol [66] as shown
in Eq. (2).

C12H22O11-C6H12O6þC6H12O6 (1)

C6H12O6-2C2H5OHþ2CO2 (2)

Appropriate enzyme and bacteria are often used to gain high efficiency
fermentation of the hydrolyzed sugars. Table 3 also shows the main
strategies of three kinds of macroalgae fermentation enzymes. A study
[14] found that enzyme Cocktail from a marine fungus could degrade
90% of the polysaccharides of L. Digitatawhile Saccharomyces cerevisiae
is thought to be the most common organism for bioethanol pro-
duction from algae [62] because their capacity of bearing high
concentration of ethanol. However, another study [14] found that
Pichia angophorae was better than S. cerevisiae for ethanol production
from brown algae as S. cerevisiae did not grow well in broths or on
agars while P. angophorae can utilise mannitol of algae well and
meanwhile produce laminarinase, generating higher ethanol yields. It
was also found that only 0.45% v/v ethanol was produced after 40 h
fermentation by S. cerevisiae frommacroalgae hydrolysate [62] and the

value was less than 40% of the theoretical yield. The reason for the
poor efficiency was that S. cerevisiae could only consume glucose in
the hydrolysates but not mannitol. However, one study found that
Zymobacter palmae can grow in a synthetic mannitol medium under
oxygen limited conditions and produced ethanol with a yield of
0.38 g/g mannitol [69]. As Table 3 shows, most enzymes have the
nature of selectivity while the complex and divers carbohydrate
composition of macroalgae requires fermenting microorganisms to
be able to metabolize mixed sugars. The coexistence of glucose and
galactose in red algae hydrolysates significantly reduces overall
ethanol productivity [71,72] and for brown algae, microorganisms
cannot utilize various sugars concurrently because they lack the ability
to use alginate and thus ethanol production can hardly reach its
maximum level [17]. Therefore, it can be concluded that cost-effective
hydrolysis of macroalgae polysaccharides into monosaccharide and
efficient fermentation of various sugars into ethanol are the pivotal
issues for bioethanol production from macroalgae.

3.3. Biodiesel

Biodiesel obtained by transesterification (alcoholysis) of trigly-
cerides is derived commercially from vegetable, animal fats or
other plant oils in the international market. Macroalgae is con-
sidered for making biogas and bioethanol rather than biodiesel as
they do not generally contain triglycerides. To date, macroalgae
biodiesel has been reported sparingly and yields are much lower
than those of microalgae [73,74]. The first report on biodiesel
production from macroalgae focused on the comparison of ther-
mochemical liquefaction and supercritical carbon dioxide extrac-
tion techniques [75] and another report compared the biodiesel
production from both macroalgae (Cladophora fracta) and micro-
algae (Chlorella protothecoides) and it demonstrated the weak-
nesses of the former for biodiesel.

Macroalgae is usually converted into bio-oil (lipids and free
fatty acids), and then the lipids are separated for biodiesel
production. The high content of free fatty acids (FFAs) in the oil
can restrain the target transformation although the FFAs are also
precursor of biodiesel. Tamilarasan [76] esterified the FFAs of
Enteromorpha compressa algal oil from 6.3% to 0.34%, and then
two steps are developed for biodiesel production. During the first
step the FFAs were established with acid catalyst and then the oil
are turned into biodiesel in the second step. Another attempt used
Cladophora glomerata to produce glucose and then converted
glucose to free fatty acids for biodiesel. Recently, Xu [77] atte-
mpted using macroalgae as carbon source of oleaginous yeast to
produce biodiesel and the maximum lipid content was 48.30%
meanwhile the by-product FFAs accompany mannitol can be used
to culture the oleaginous yeast. Some new techniques like ultra-
sound irradiation are also used to assist the transesterification by
forming fine emulsion between oil and alcohol and reaction rate
was accelerated because of cavitation [76]. Besides, biodiesel yield
obtained from wet biomass was almost ten times lower than from
dry biomass which implies negative effect of water on transester-
ification experiments [66], and thus the dehydration procedure is
necessary to achieve high efficiency.

3.4. Bio-oil

Possessing the major superiority of significantly faster rates than
those of anaerobic digestion, thermochemical conversion techniques,
including pyrolysis and liquefaction, can convert biomass to liquid
bio-oil [78] quickly. Compared to microalgae bio-oil refine research,
less attention has been devoted to thermochemical conversion of
macroalgae.
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3.4.1. Pyrolysis
Pyrolysis of macroalgae for bio-oil, in recent years, has attracted

increasing interest. On one hand, macroalgae can be easily harvested
from water and dehydration; on the other hand, pyrolysis is likely to
be the most tolerant method to the high ash content of the algae
compared to other biochemical methods. Pyrolysis is accomplished
at temperatures between 400 and 600 1C and atmospheric pressure
but requires dry feedstock. During the pyrolysis process, organic
structures are decomposed into vapor phase, gas compounds and a
carbon-rich solid residue (char). The vapor phase then condensed
into liquid product called bio-oil (or bio-crude).

Studies on the pyrolysis behaviors and products characteristics of
several macroalgae including brown algae, red algae and green algae
[54,79–83], have shown that the pyrolysis process of macroalgae for
biofuels production, which is similar to the pyrolysis process of
terrestrial plants and microalgae [84–88], undergoes three stages:
moisture evaporation, primary devolatilization and residual decom-
position [41], and the activation energy of macroalgae is higher
compared to terrestrial biomass [82]. The yields and properties of
bio-oils highly depend on several factors including algal composition,
pyrolysis temperature, heating rate, inorganic material content and
others. Pyrolysis of macroalgae at 500 1C has been demonstrated to be
a suitable temperature to achieve the maximum yield of bio-oil [82–
85,89,90]. The heating rate is also important during the formation of
bio-oils. Low heating rate leads low gas evolution but result in low
bio-oil yield with high char yield. The increased heating rate provides
higher thermal energy to facilitate better heat transfer between the
surroundings and the inside of the samples, leading to a higher bio-oil
yield [84,90–92].

The bio-oil obtained from pyrolysis of macroalgae is a mixture of
water and various organic compounds. Due to different algal feed-
stocks, analysis methods of bio-oil, processing devices or methods,
for example, applying microwave-mediated pyrolysis [93], the main
compounds in bio-oils vary between macroalgae and are greatly
different from those of terrestrial biomass, but similar to bio-oils
obtained from pyrolysis of microalgae [84]. By performing GC/MS,
compounds identified in the bio-oil mainly include groups of
carboxyl acids, furans, ketones, sugars, phenols, N-containing com-
pounds, hydrocarbons, fatty acids and their derivatives. Totally, the
bio-oil has a high content of oxygenates with a very small amount
of hydrocarbons, thus, resulting in a relatively low heating value.
The high heat values (HHVs) are around 20–30 MJ/kg. Table 4
shows a summary of yields, properties and compositions of bio-
oils obtained from pyrolysis of different macroalgae at 500 1C. It can
be seen that for different species of macroalgae, the properties and
compositions of bio-oils could be very different; meanwhile, the
high content of N-containing compounds (refer to element N
content) in bio-oils presents a challenge to its direct use as fuels.
What's more, the macroalgae contains a high mineral content (Ca,

K, Na and Mg) which may be potentially problematic for pyrolysis,
needing pre-treatment, e.g. using acid to remove the most propor-
tion of the mineral matter [54,89]. Another inevitable issue is that
due to the high energy penalty of the drying process of the wet
macroalgae, pyrolysis is found to produce less energy than it
consumed [94]. Based on this constraint, thermochemical pathways
using pyrolysis to transform algal biomass to bio-oil needs further
verification [95].

3.4.2. Liquefaction
Liquefaction is a process by which biomass undergoes compli-

cated thermochemical reactions in a solvent medium to form
mainly liquid products. Hydrothermal liquefaction (HTL) is a
process using water as reaction medium, carried out in sub-/
supercritical water (200–400 1C) under sufficient pressure to
liquefy biomass for bio-oil production [96,97]. The liquid bio-oil
is usually separated by extraction of the reaction mixture with
organic solvents such as dichloromethane, trichloromethane and
acetone.

liquefaction of high moisture content algal biomass requires no
feedstock drying and no use of organic solvents, which is more
feasible from both economical and energetic points of view.
However, macroalgae has been mostly overlooked as a feedstock
for bio-oil by HTL because microalgae are thought to be candidate
with higher lipid content inherently. Elliott et al. [98] published
the first report of HTL of macroalgae (Macrocystis sp.) using a batch
reactor fed with kelp dry mass at 10 wt% in water. After 4 h at
350 1C, they reported an oil yield of 19.2 wt% based on solvent
separation of oil product. Zhou et al. [99] studied the HTL of the
green marine macroalgae Enteromorpha prolifera and obtained a
maximum yield of bio-oil 23.0% dw with an energy density of
29.89 MJ/kg at 300 1C, 30 min, and using Na2CO3 as catalyst.
Anastasakis and Ross [100] investigated the influence of reaction
parameters on the liquefaction behavior of a typical brown
macroalga Laminaria saccharina, and the highest bio-crude yield
of 19.3% af dw was obtained with a 1:10 biomass: water ratio at
350 1C and a residence time of 15 min without catalyst. Their bio-
crude yield is much lower than the result of Li et al. [101] obtained
by HTL of another brown macroalgae at 340 1C, while the HHV of
the bio-crude (36.5 MJ/kg) is much higher than that of Zhou et al.
Neveux et al. [102] converted six species of marine and freshwater
green macroalgae into bio-crude through HTL in a batch reactor,
and found the bio-crude yields were similar to those produced
from HTL of green macroalgae E. prolifera and brown macroalga L.
saccharina. The ash content in macroalgae is much higher than
that of microalgae, which resulted in lower yields of bio-oils than
that obtained from HTL of a range of microalgae (26–57% dw) [95].
So far, reports of the HTL of macroalgae have been limited to batch

Table 4
Yields and properties of bio-oils obtained from pyrolysis of different macroalgae at 500 1C.

Algae Brown algae Red algae Green algae

Name Undaria pinnatifida Laminaria japonica Laminaria digitata Fucus serratus Sargassuum natansa Prophyra tenera Enteromorpha clathrata
Yield (%) 39.5 37.5 17 11.0 – 47.4 –

C (%) 56.5 73.5 55.6 68.4 53.8 65.7 57.8
H (%) 5.7 7.9 7.1 8.9 8.2 7.4 7.9
N (%) 7.2 5.7 2.2 2.7 6.55 9.6 9.3
S (%) 0.8 0.2 0.1 0.1 – 0.2 –

O (%) 29.8 12.9 – – 31.46 17.3 25.0
H/C 0.10 0.11 0.13 0.13 0.15 0.11 0.14
O/C 0.53 0.18 – – 0.58 0.26 0.43
HHV (MJ/kg) 23.33 33.57 23.08 32.46 – 29.74 –

Ref. 89 89 83 83 85 97 85
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reactor testing. Recently, Elliott et al. [103] designed a bench-scale
continuous-flow reactor system and converted wet macroalgae
slurry the kelp, Saccharina spp. with concentrations at 5–22 wt%
dry solids into bio-crude at 350 1C, 20 MPa. The bio-crude product
was recoverable by gravity separation, but the oil yield is low, in
the range of 8.7–27.7% af dw for six HTL tests.The biochemical
compositions of algal biomass significantly influence the liquefac-
tion yields. The higher yields of bio-oils achieved by microalgae
are generally attributed to higher lipid content, compared to
macroalgae that have commonly higher carbohydrate content. A
recent study on the co-liquefaction of S. platensis and E. prolifera,
has shown that the yield of bio-oil increases with the ratio of
microalgae to macroalgae [7]. Besides, for the formation of char,
Biller and Ross [104] explained the greater proportions of carbo-
hydrates in macroalgae have a positive impact on char formation
by liquefying model compounds glucose and starch.

Bio-oils from HTL of macroalgae deliver a high-energy (30–40
MJ/kg) and lower oxygen and moisture content compared to
pyrolysis bio-oil [97,105]. Compounds including ketones, phenols,
alcohols, fatty acids, esters, aromatics and N-containing compounds
are the common main components of bio-oil [99,102], which is
similar to the main composition of bio-oil from HTL of microalgae
[106,107]. Actually, much or most bio-oil from HTL of macroalgae
dissolved in the water byproduct such as some carboxyl acids,
typically, the acetic acid [101]. In the HTL process of macroalgae,
the main components (carbohydrates, proteins, lipids) of the algae
are decomposed mainly by hydrolysis into fragments of light
molecules: carbohydrates i.e. polysaccharides decompose to mono-
saccharides including hexoses and pentoses; proteins decompose to
various amino acids, and lipids to fatty acids and glycerin. At the
same time, these fragments, which are unstable and reactive,
rearrange through condensation, cyclization, and polymerization,
leading to oily compounds and having appropriate molecular
weights [108,109]. Fig. 3 shows the probable transform mechanisms
of monosaccharides in the HTL process. The N-containing com-
pounds such as indole, pyrroles, and pyridines are formed by
Maillard reaction of amines and sugars, as shown in Fig. 4 [110]. In
addition, using acohols (e.g. methanol, ethanol [111] or ethylene
glycol, etc. [112]) as medium for the liquefaction of macroalgae were
also studied. The bio-oils obtained are mainly composed of fatty acids
and esters, but the heating values of bio-oils are still low for the
presence of large quantities of O, S, and N [112].

3.5. Others

Ethanol production from low-cost fermentation substrates is
the most obvious one as it has a direct application in the
replacement of fossil fuels. However, other products such as
biobutanol and biohydrogen can be produced as well [113,114].
Biobutanol has higher heating and additional value inherent than
ethanol (butanol 29.2 MJ/L, ethanol19.6 MJ/L). It can be used to

Fig. 3. Probable transform mechanisms of monosaccharides in the HTL process.

Fig. 4. Maillard reaction of amines and sugars [110].
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supplement both gasoline and diesel fuels and can be handled by
existing infrastructures [115]. There are only several literatures
investigating the biobutanol production from macroalgae. Macro-
algae, particularly the brown algae, is yet to be investigated in
terms of their potential for biochemical conversion by Clostridium
spp. to butanol and other solvents [116] through the acetone–
butanol (AB) fermentation. Michael [116] successfully demon-
strated the feasibility of acetone–butanol fermentation of brown
macroalgae biomass by C. acetobutylicum and the butanol con-
centration

reached about 0.26 g butanol/g sugar in the hydrolysate, and
meanwhile, the pilot study recovered 0.29 g butanol/g sugar [117].
Butanol, ethanol, acetone, butyric acid and acetic acid can be prod-
uced by Clostridium spp. but glucose-based polysaccharides such
as mannitol cannot be effectively utilized [116]. The study also
found that the fermentation of macroalgae extract exhibited
triauxic growth, with glucose being utilized first, mannitol second,
and polysaccharide-bound sugars last. To summarize, little is
presently known about the bio-conversion of macroalgae to but-
anol and the poor productivity and limited known fermentative
bacterium all need significant improvements.

4. Prospect on the utilization of macroalgae for biofuels
production

Macroalgae is an abundant but under-utilized biomass resource.
Currently, less than 1% of available macroalgae is utilized [118].
Although, the notion of aquatic biomass production for energy
applications is environmentally better than the fossil fuels but still
suffer from cost effectiveness and technological barriers [1]. The
technologies still require considerable research and development.

Taking bioethanol production as an example, the estimated cost of
macroalgae is ca. $0.50/kg (dw) ($0.16 from corn) [119]. There are
limited economic assessments on macroalgae biofuel production as
the research just started and it is not possible to make full-scale and
regularly life cycle assessment based on current knowledge. Table 5
shows the main starting points of economic evaluation of biofuel
production from macroalgae. The biofuel technologies still require
considerable research and development. The technologies selected
should be evaluated not only from the standpoint of technical
feasibility, economic efficiency but also from the environmental
point of view and the byproducts should be recycled. Table 6 outlines
the strengths and weaknesses of different biofuel techniques from
macroalgae.

As shown in Table 6, it can be concluded that fermentation for
bioethanol and hydrothermal refinement fromwet macroalgae are
more competitive while transesterification for biodiesel, anaerobic
digestion for biogas and pyrolysis for bio-oil are limited for low
lipid content, mineral inhibition or the high energy consumption.
Besides, the pyrolytic process as a fuel production needs further
assessment as it accompanies nitrogen content in the oil. The
commercially viable of macroalgae biofuel production is a key
current issue. The cost of energy production from macroalgae is
typically 5–60$/GJ on the basis of macroalgal biofuels life cycle
assessment [123] and it is well over those of coal, oil, and liquified
natural gas. To decrease the cost associated with feedstock collec-
tion networks, finding applicable pretreatment, making hydrolysis
and fermentation reactions efficient and scaling-up of the proces-
sing equipment and, commercializing of the systems and giving
scientific life cycle assessments of variable production technolo-
gies are the emphasis for future macroalgae biofuel research. More
work need to be done to develop this area to its full potential.
Step-wise research challenges linked to this development are

Table 5
The main points of economic evaluation of biofuel production from macroalgae [119–121].

Input Main use Output

Cultivation and
harvest

Labor force Transportation Macroalgae
Diesel Transportation
Petrol Lighting
Electricity

Pretreatment Labor force Illumination, pumping, grinding, milling,
stirring

Feedstock
Electricity

Technologies Labor force Machine running and heating Biofuels CH4 and bioethanol for heat, electricity and chemical
industryElectricity and fuel

Chemicals and
enzymes

Further use Labor force Transportation Fertilizer and recovery
Diesel

Potential impacts CO2 emissions Direct and indirect power release CO2: macroalgae uptake
NOx and SOx emissions N and S: nutrients from waste water

Table 6
Strengths, weaknesses and the main products of different biofuel techniques from macroalgae.

Strengths Weaknesses Primary product Yield

Biochemical Anaerobic
digestion

No dewatering High sodium and
nitrogen inhibition

Methane 0.12–0.48 m3 CH4/
kg VSMaturity

Fermentation High carbohydrates Low efficiency, mixed
sugars

Bioethanol 0.14–0.38 g
ethanol /g sugar
[21,57]

Chemical Transesterification No dewatering Poor yield FAME or FAEE 90.6–99.9% of free
fatty acids [122]

Thermochemical Pyrolysis No caustic chemicals
needed, Fast rates;

High temperature and
energy consumption;

Aromatics, ketones, pentosans, phenols, hydrocarbons,
nitrogen containing organics, palmitic acid, furanes

11.0–47.4% dw.
[83,89]

Hydrotherml
liquefaction

No drying Viscous, high
temperature and
pressure

Aromatics, phenols, alkanes, fatty acids, ketones,
heterocyclic compounds

19.2–44.69% dw
[96,102]More effective
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inevitable. On one hand, macroalgae has high mineral or ash
content, mainly comprised of K, Na, Ca and Mg [124] which are not
beneficial for the use of macroalgae as a fuel. On the other hand,
the alkali metal can be potential catalyst of hydro-thermal process.
It is prudent to get high quality and quantities biofuel. Eventually,
macroalgae integration into a biorefinery is a challenge.

Fig. 5 shows the biorefinery conception based on the summary of
macroalgae conversion techniques. Mature macroalgae are harvested
firstly under collection networks and mechanical pre-treatments
are needed to remove foreign objects before biochemical and/or
hydrothermal treatments. In the first transform route, treated
macroalgae is used as the feedstock directly. Biogas, bio-oil and
residue are acquired and during the process, products are cooled by
the stuff. For the second route, residual after bioethanol fermentation
is filtrated and then act as part of the hydrothermal feedstock. To
stabilize and cycle the current hydrocolloids extraction, route third is
designed. Extraction residue stock is also added to the hydrothermal
liquefaction device meanwhile the high alkali metals are easily
recovered after the hydrothermal process.

Our previous work for the biorefinery was conducted firstly
with macroalgae E. prolifera. The macroalgae was converted to bio-
oil by hydrothermal liquefaction in a batch reactor. The effects of
temperature (varied from 220 to 320 1C) and time (varied from
5 to 60 min) on the bio-oil production were studied. The highest
yield (23.0 wt%) of bio-oil with HHV about 30 MJ/kg was obtained
at 300 1C [99].The liquefaction solid residue (hydrochar, 15–20 wt
%) could be prepared as adsorbent material based on our previous
study [125], where magnetic carbon composite was prepared via
thermal pyrolysis of hydrochar, obtained from the hydrothermal
liquefaction of Salix psammophila, and the activated hydrochar had
high surface area and pore volume (up to 1351 m2/g and
0.549 cm3/g, respectively) which can be used for pollutant removal
from aqueous solutions. The liquid fraction (35–50 wt%) which
contains large amount of organic acids, is favorable for biogas
(biomethane) production by anaerobic digestion, and the relevant
work is underway.

5. Conclusions

Macroalgae has inherent advantages that make them environ-
mentally sustainable compared to first and second generation
biofuel mass but researches on biofuel production from the

macroalgae in both academia and industry are at infancy. Anae-
robic digestion technology has sufficiently been matured to offer a
range of possibilities to further optimize biogas (methane) yields.
Bioethanol and hydrothermal refinement fromwet macroalgae are
more competitive while transesterification for biodiesel, anaerobic
digestion for biogas and pyrolysis for bio-oil are limited for low
lipid content, mineral inhibition or the high energy consumption.
Macroalgae does not contain as much phenolic material in the
biofuels owing to the absence of lignin type materials but the fate
of nitrogen and low quality are potentially problematic in using
these as fuels. Macroalgae integration into a biorefinery is promis-
ing for its efficient conversion to biofuels.
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