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Upper: Loch Duart Ltd. headquarters in Badcall Bay, NW Scotland. 
Middle: From Loch Duart Ltd. Headquarters looking west across Badcall Bay. 
Lower: Looking south across the head of Badcall Bay. 
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Upper: Rachel Miller and Laminaria saccharina harvest 2004. 
Middle: Laminaria saccharina droppers on longline 2005. 
Lower: Nick Joy and Laminaria saccharina harvest 2004. 
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Middle: Palmaria palmata on Laminaria hyperborea stipe 2004. 
Lower: Close up of Palmaria palmata on dropper 2005. 
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Upper: Palmaria palmata harvest 2004. 
Middle: Palmaria palmata on frame 2005. 
Lower: Palmaria palmata heavily fouled with bryozoans, mussels and other August 
2005. 
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ABSTRACT 

Cultivation of Laminaria saccharina (Linnaeus) Lamouroux and Palmaria palmata 

(Linnaeus) Kuntze was trialled at three fish farm sites in north-west Scotland. Results 

show that seasonal yields of L. saccharina were enhanced by 50 % and P. palmata by 

63 % when cultured adjacent to fish farm cages compared to environmentally similar 

sites away from the farms. Yields of P. palmata were further enhanced under conditions 

of optimal water movement. 

 

Ammonium concentrations in the seawater 0 to 50m away from the fish cages were 

found to be 2 - 3 μM greater than ambient. Enhanced concentrations of ammonium 

could be detected 200 to 300 m from the cages although the distribution is heavily 

influenced by local hydrography. 

 

Nitrogen content of L. saccharina and P. palmata cultured adjacent to the salmon cages 

in summer was higher than in seaweeds cultured at reference sites away from fish cages. 

 

Stable nitrogen isotope analysis indicates that the nitrogen in seaweeds grown next to 

salmon cages is derived from the fish farm and farm derived nitrogen is likely to be 

widely dispersed in the lochs where cages are situated. 

 

A preliminary economic analysis showed that growing seaweeds commercially, in 

particular P. palmata, may be at worst cost neutral, with profitability increasing as a 

result of enhanced production through increased nutrient availability adjacent to fish 

farms. A one hectare seaweed farm producing 600 tonnes wet weight over two years 
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(300 tonnes per year) of P. palmata could potentially absorb up to 30 % of nutrients 

generated from a 500 tonnes salmon production unit. 

 

As farm origin nitrogen is evident in biota at distances of up to one kilometre away 

from the cages, cultured macroalgae would not have to be sited close to cages to result 

in net nitrogen removal facilitating the siting of algal farms in areas more suited for 

individual species requirements while still maintaining bioremediation benefits. 
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GLOSSARY 

ADCP  Acoustic Doppler Current Profiler 

ANOVA Analysis of Variance 

CTD   Conductivity-Temperature-Depth Instrument 

Diadromous Regularly migrating between freshwater and seawater e.g. salmon. 

DIN  Dissolved inorganic nitrogen 

DIP  Dissolved inorganic phosphorus 

ECE  Equilibrium Concentration Enhancement 

EcoQOs Ecological Quality Objectives related to Eutrophication set by OSPAR 

FRS  Fisheries Research Services 

OSPAR The Convention for the Protection of the Marine Environment of the 

North-East Atlantic. The “OSPAR Convention” was opened for signature 

at the Ministerial Meeting of the Oslo and Paris Commissions in Paris on 

22 September 1992. 

PES  Provosali’s Enrichment Solution 

RID  Riverine Inputs and Direct Discharges 

SAMS  Scottish Association for Marine Sciences 

SEPA  Scottish Environmental Protection Agency 
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CHAPTER 1 

REDUCING THE ENVIRONMENTAL IMPACT OF 

SEA-CAGE FARMING THROUGH CULTIVATION 

OF SEAWEEDS. 
 
Introduction 

Fish cage farming today is a significant industry, expanding in many parts of the world. 

In 2002 total world fish aquaculture production was nearly 26 million tonnes. From a 

world production of about 100,000 tonnes in the early 1950s, total marine and 

diadromous fish farm production has increased to about 3.7 million tonnes in 2004 

(Figures 1.1 & 1.2, FishStat Plus, FAO 2006). 

 

Fish farming in the UK has increased from an annual production of 598 tonnes in 1980 

(Tett and Edwards 2002) to 169,736 tonnes in 2003 (Smith et al. 2005), a 283 fold 

increase in production over 23 years.  Over 90% by value and by volume of the UK’s 

aquaculture takes place on the west coast of Scotland. Production is dominated by 

Atlantic salmon (Salmo salar) reared in cages at sea, with a much smaller production of 

rainbow trout (Onchorhynchus mykiss). The last two years which has seen the first 

declines in salmon production. In 2004, salmon production was 158,099 tonnes, and 

rainbow trout production 6,352 tonnes, both reductions from the previous year, 7% and 

10% respectively, with further reductions expected for 2005 (Smith et al. 2005). 
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Figure 1.1 World aquaculture fish production 1950 – 2004 (FAO: Fishstat Plus 2006, 
www.fao.org/fi/statist/fisoft/fishplus.asp also earthtrends.wri.org). 
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Figure 1.2 World and U.K. Diadromous aquaculture fish production 1950 – 2004 (FAO 
Fishstat plus 2006). 
 

Salmon are typically fed energy rich diets high in protein and lipids. The principal end 

product of protein metabolism in fish is ammonia-nitrogen, which is toxic and therefore 

either excreted rapidly or converted to less toxic substances (Porter et al. 1987). A range 

of other nitrogenous compounds may also be excreted (including urea, trimethylamime, 

creatine and creatinine), and the chemistry of these compounds in sea water is complex 

(Handy and Poxton 1993b). If the amount of protein ingested is higher than the 

organisms’ requirement or if the amino acid balance is poor, deamination occurs and 

nitrogen is excreted passively, mainly as ammonia, across the gills. 



 3

 

In general between 52 and 95% of the nitrogen, 85% of the phosphorus and 80 – 88% of 

the carbon input to a marine fish farm may be lost to the environment as feed wastage, 

fish excretion, faeces production and respiration (Wu 1995). This equates to 95 – 102 

kg N and 9.5 kg P per tonne of fish produced (see figure 1.3, Hall et al. 1992; Subandar 

et al. 1993). 

 

The rapid growth in sea-cage fish farming in the UK, particularly in Scotland and 

Ireland, and the extent to which intensive aquaculture results in degradation of the 

surrounding environment has been the subject of continued speculation and 

investigation (Gowen and Bradbury 1987; Gillibrand et al. 2002; Heath et al. 2002; Tett 

and Edwards 2002; Gubbins et al. 2003; Rydberg et al. 2003; Smayda 2006; Beveridge 

1984). The quantity of nutrient wastes discharged at fish farms becomes evident when 

compared to muncipal loadings. For example, 8,700 t of the 10,000 t of salmon 

produced in Scotland in 1986 were farmed on the West and North coasts and the 

Hebridean Islands (WNH; World Natural Heritage region). The amount of nutrients 

discharged from fish farms in the WNH region that year was estimated to have 

exceeded that in the waste from the human population in that region (Tett and Edwards 

2002). The WNH salmon production increased to 25,000 t in 1990 and 81,000 t in 2000. 

Tett and Edwards  (2002) calculated that the regional WNH nutrient loading from fish 

farms in the 15-year period from 1985-2000 increased from parity with domestic waste 

delivery to exceeding the latter by 9-fold. MacGarvin (2000) conjectured that, in the 

year 2000, Scottish aquaculture released approximately 7,500 tonnes nitrogen and 1,240 

tonnes phosphorus, amounts comparable to the annual sewage input of approximately 

3.2 million and 9.4 million people, respectively. In 1997, Scotland's population was 5.1 

million. 
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There is now a consensus that at least 80% of the total dissolved inorganic nitrogen 

(DIN) from fish farming is plant-available as potentially eutrophicating substances 

(Persson 1992; Troell et al. 1997; Black 2001). The remainder is lost as particulate 

organic waste, a proportion of which is also likely to end up in the water column as 

dissolved nutrients (Hall et al. 1992; Wu 1995). In coastal waters the two most 

important elements in algal metabolism are nitrogen and phosphorus because they are 

most likely to limit growth rate under ‘natural’ conditions. As phosphorus is in excess in 

the open ocean, the principal limiting factors for algal productivity are N and light 

(Dring 1991; Lobban and Harrison 1996). Fish excreta and waste fish food have a N:P 

ratio close to 7:1 w/w (Aure and Stigebrandt 1990) and hence provide well balanced 

nutrients for algal growth.  

 

The Scottish Environmental Protection Agency (SEPA) regulates fish farming activity 

by assessing the local hydrographic features and tonnage of fish produced on site,   

balancing this against the need to allow for free movement of additives, such as feed 

pellets, fish excretion and fish faeces, which mix in the water column and are advected 

by tide and wind-induced currents to mix within the surrounding coastal waters 

(Falconer and Hartnett 1993; Wu 1995). Hence, with the exception of the area of 

seafloor immediately below the cages, gross impacts in the immediate vicinity of the 

farm are largely prevented, but the farming activity still results in the net input of 

nutrients to the surrounding seas (Gowen and Bradbury 1987; Aure and Stigebrandt 

1990; Pitta et al. 1998; Karakassis et al. 2001; Doglioli et al. 2004; Islam 2005; Pitta et 

al. 2005; Tsapakis et al. 2006). 
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Changes in nutrient ratios in inshore waters due to anthropogenic input have been linked 

to harmful algal blooms (HABs, Berry, 1996). However, Smayda (2006) reported that, 

despite the 283-fold increase in farmed salmon production that has occurred in Scotland 

over a period of 23 years, accompanied by a more than 23-fold increase in annual N and 

P waste loadings from fish farms since 1985, there is no evidence that blooms of the 

indigenous HAB flora have increased in frequency or that novel HAB species have 

newly expanded into Scottish coastal waters. These conclusions agree with those 

arrived at by Tett and Edwards (2002), and by Rydberg et al. (2003) concerning 

possible evidence for HABs in Scottish waters. 

 
The possibility of nutrients contributing to eutrophication in Scottish waters is not as 

equivocal, however, as it not clear how wastes are distributed within lochs. Most 

research has been aimed at immediate sedimentation underneath the farm i.e. on uneaten 

food plus faecal pellets (Cromey et al. 1998; Cromey et al. 2002; Nickell et al. 2003). 

However, the bottom underneath a farm recovers within 2-4 years (Holmer and 

Kristensen 1996; Karakassis et al. 1999; Brooks et al. 2003; Macleod et al. 2004) after 

the farm is removed. The potential for eutrophication of the environment as a result of 

nutrients originating from fish farms has been recognized by the regulatory authorities 

in Scotland and the Equilibrium Concentration Enhancement (ECE) for a loch is 

considered when determining salmon farm biomass consents. The ECE is the ratio 

between nutrients added via fish farming and the averaged water flux estimated as the 

ratio between the volume of the loch at low water and tidal flushing time calculated 

using a tidal prism method (Gillibrand and Turrell 1997; Gillibrand et al. 2002). 

 

The presence of sites previously used for fish farming may make an area more sensitive 

to the establishment of further farms than a pristine location would be (Rydberg et al. 

2003). The leakage of inorganic nutrients from deposits on the sea floor, as well as from 
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the farm itself, results in long term ecological effects, which are not considered within 

ECE methodology. In most cases, it will take several years before a balance between 

input and output is established at the sediment-water interface. A proportion of the 

inorganic nutrient waste from the farms will be stored in the sediments, but the rest is 

returned to the water column, eventually showing up as larger internal nutrient 

recirculation and potentially as excess winter nutrient concentrations (Beveridge 1996; 

Stigebrandt 1999; Rydberg et al. 2003; Islam 2005). 

 

In lochs with restricted exchange (i.e. flushing time of more than two days) and larger 

fish farms, nutrients originating from fish farms may dominate the plankton production. 

If one assumes a net phytoplankton production of 30 gC m-2 y-1, a 1,000 t y-1 (40 t N y-1) 

fish farm may cause a wide-spread sedimentation equal to the plankton production over 

an area of 10 km2, assuming that no nutrient export to the waters outside the loch takes 

place. This type of comparison may work as a conservative tool for estimation of the 

long-term environmental effects of fish farms (Rydberg et al. 2003). After many years, 

regeneration of nutrients might be near 100%, presuming that denitrification is not 

efficient and burial losses are not large, which could be the case. 



 7

 

 

Figure 1.3  A budget for the flow of nutrients from oceanic wild caught fish to the 
coastal environment for a harvest of 1 kg of farmed salmon assuming no substitution 
with vegetable protein or oil and a ratio of fish feed to product of 1.2:1 (Black 2001). 
 

Macroalgae can take up nitrogen from sea water at high rates resulting in growth of up 

to 9% in biomass d-1 (Subandar et al. 1993). Fucoid primary production can be 700 g C 

m-2yr-1 (Hawkins et al. 1992) compared to 95 g C m-2yr-1 for phytoplankton (Burrell 

1988). Dring (1991) gives typical production values of  50 – 100 g C m-2yr-1 for 

phytoplankton and from 300 – 900 g C m-2yr-1 for macroalgae. Waste nutrients 

emanating from fish farms present a means of increasing production of seaweed crops 

and, by harvesting the macroalgae, local nutrient pollution would be alleviated and 
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17% protein, 
7-10% oil, 
75% water
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40% Protein 
30% oil 
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C  660g 
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and escapes 

N  1.9g 
P  0.4g 
C  13g 

Particulate wastes 

N  22g 
P  9.5g 
C  185g 
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N  46g 
P    4.9g 
C  323g 
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result in further net losses of nutrients from coastal ecosystems.  By using macroalgae 

that are also of commercial value, as human or animal food, their cultivation will 

generate a secondary income for the fish farmer and an economic as well as an 

environmental incentive. 

 

The ability of many species of macroalgae to effectively utilise nutrients from effluent 

in sea water, resulting in their rapid growth, is well documented both for tank and sea-

based fish cultivation systems (Chopin et al. 1999; Neori et al. 2000; Neori et al. 2004). 

The green alga Ulva lactuca can remove 90% of ammoniacal nitrogen and the red 

macroalga, Gracilaria chilensis can remove up to 95 % of dissolved ammonium from 

fish effluent in integrated tank cultivation systems (Cohen and Neori 1991; Buschmann 

et al. 1996). Using effluent from cultivated abalone (edible marine gastropods) as an 

ammonium source, Evans and Langdon  (2000) showed Palmaria mollis had a total 

ammoniacal nitrogen (TAN) uptake of 1306 µmol kg–1 h-1. Laminaria saccharina has 

been found to remove 170 to 339 μmol l –1 h-1  (26 – 40%) of the incoming dissolved 

inorganic nitrogen (DIN) when cultivated in salmon farm effluent  (1993).  Gracilaria 

chilensis was found to have a 40% higher growth rate when cultivated at a distance of 

10m from salmon sea-cages in Chile (1997). Similarly, Petrell et al. (1993) 

demonstrated that 1.5μM ammonia levels found adjacent to salmon sea-cages enhanced 

the growth of brown macroalgae. Petrell and Alie (1996) subsequently showed the 

commercial viability of kelp cultivation adjacent to salmon farms. 

 

This project is the first to address the potential bioremediation attainable by cultivation 

of macroalgae adjacent to sea-based fish farms in the UK. Estimates of the effectiveness 

of macroalgae at removing excess N will be calculated by comparing the growth rates 

and nitrogen content of macroalgae cultivated at fish farm and pristine sites. The aim, 
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therefore, is to demonstrate an environmental advantage to cultivating macroalgae on 

fish cultivation sites and to produce a model for their capacity to reduce nutrient flux 

through potentially eutrophic surface coastal waters. 

 

Specific objectives 

1) to determine the distribution of soluble compounds of ammonia, nitrogen and 

phosphorus in the immediate vicinity of selected fish cage sites and to 

compare these levels with those of pristine sites. 

2) to contrast the rates of macroalgal growth on fish farm sites with those on sites 

away from the influence of fish farming. 

3) To investigate, through the use of stable isotope signatures, if the nitrogen 

absorbed by the seaweeds is of fish farm origin. 

4) To investigate the relationship between ammonium and nitrate as nitrogen 

sources for the cultured seaweeds. 

5) to assess the ability of commercially important seaweeds, cultivated in the 

immediate vicinity of caged fish, to reduce the nutrient loading diffusing to 

the surrounding waters. 

6) to produce an estimate of the total nitrogen removal potential of the seaweeds 

and preliminary cost: value analyses. 

 

Cultured Seaweeds 

The edible red alga Palmaria palmata (Linnaeus) Kuntze was the main species studied. 

The project followed on from EU-funded research at Queens University Belfast 

demonstrating the alga’s capacity for rapid and sustained growth on long-lines in the sea 

(Browne 2001).  The potential for using the kelp Laminaria saccharina was also 

investigated during the project. 
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Palmaria palmata, commonly known as Dulse, Dillisk (English), Dilleasc or 

Creathnach (Irish: shell dulse) is an edible intertidal or shallow subtidal red alga found 

throughout the temperate zone of the northern hemisphere. It is distributed throughout 

the British Isles, but seems to be absent from some parts of the east coast of England. In 

the Atlantic, it is found from arctic Russia to northern Portugal in the east and from 

arctic Canada to USA (New Jersey) in the west. It is a native and abundant species in 

Britain and Ireland where it grows as an epiphyte on kelp stipes (especially on 

Laminaria hyperborea) and mussel beds and on rock surfaces (Guiry 1977; Irvine and 

Guiry 1983). 

 

Palmaria palmata was widely used for food by the maritime Irish and Scots. It was also 

dried and eaten uncooked in Iceland, Norway, France and eastern Canada (Seaweed 

website, www.seaweed.ie). Although it has been utilised over centuries (regulations for 

the gathering of dulse are mentioned in the Icelandic sagas of the 10th century), 

increasing economic affluence resulted in a decline in dulse harvesting during the 20th 

century. Recent interest in naturally derived foods has created increased pressure on 

natural populations and has highlighted the need for alternative methods of growing 

good quality, high value plants to supplement those harvested from natural populations. 
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Laminaria saccharina was chosen as it is a large, fast-growing alga and thus has good 

bioremediation potential. The alga also has potential, although unproven, commercial 

value. Laminaria saccharina is edible and is very similar to L. japonica or Kombu 

which constitutes the largest aquaculture crop, by weight, in the world. Laminaria 

saccharina is also currently being tested as a potential source of novel polysaccharides 

with biomedical applications (Cumashi et al. unpubl.) as an adjunct to this project. 

Loch Duart Ltd 

The principal industrial partner in this project is Loch Duart Ltd. The company is based 

at Badcall Bay (Figure 1.4). Various companies have been processing salmon at this site 

since the 19th century. It was one of the first companies to enter into salmon culture in 

Scotland (starting 1975) and currently one of the few Scottish owned salmon farming 

businesses amongst the larger multinationals that dominate salmon production in 

Scotland. In order to maintain market share in this increasingly competitive area, Loch 

Duart Ltd. has been a leader in the area of quality salmon, utilising farming practices 

that are not always the most economical but aimed at growing fish of the best quality 

under best environmental practice (www.lochduart.com). 



 12

 

Figure 1.4 Location of salmon farm lease sites for Loch Duart Ltd: Loch Laxford, 
Badcall and Calbha in north west Scotland. 
 

Farming practices include lower stocking densities and feeding regimes such that only 

the dominant fish are fed to satiation resulting in leaner, fitter salmon. Nets on salmon 

cages are not treated with antifoulant, rather the fish are transferred around pens and the 

nets are regularly pulled out of the water to restrict the development of fouling 

organisms. Environmental recognition includes recently gaining ISO 14000 

accreditation and animal welfare certification from the RSPCA (Freedom Foods). Loch 

Duart’s interest in this project is to alleviate any possible impact that the farms may be 

having on the nutrient status of surrounding waters by promoting the culture of 

seaweeds. At the same time they hope to develop a product which may provide a second 

income. 
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In 2003, Loch Duart had three marine farm sites, one at Badcall Bay (also the site of 

head office); Calbha approximately 3 km south of Badcall and Loch Laxford 8 km north 

of Badcall (Figure 1.4) and these are the sites where cultivation trials were conducted 

for the years 2003-2005. 

 

In addition to other farm practices aimed at reducing the impact of farms on the 

environment, Loch Duart rotate farming between their sites so that one farm site is 

fallow every year. The salmon are grown for two years at each site from introduction as 

smolt (mean size approximately 200 g) to harvest (mean size approximately 5 kg). In 

2003, salmon were introduced as smolts to the Calbha site, salmon reached harvest size 

at Loch Laxford and Badcall Bay was left fallow. As the aims of this project concerned 

farms as a source of nutrients, experiments each year were conducted at the Loch Duart 

sites with the maximal biomass of salmon and thus maximal feed input. In 2003 this 

was Loch Laxford; 2004: Calbha and in 2005: Badcall Bay (Figures 1.5 & 1.6). 
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Figure 1.5 Salmon biomass at each of the three farm lease sites; Badcall, Calbha and 
Laxford for the period: 2003 – 2005 (source: Loch Duart Ltd, 2005). 
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Figure 1.6 Amount of salmon feed added to fish farm cages at each of the three farm 
lease sites; Badcall, Calbha and Laxford by month for the period: 2003 – 2005. 
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CHAPTER 2 

HYDROGRAPHIC DATA IN THE VICINITY OF 

THE FISH FARM CAGES 
 
Introduction 

The main premise of this project is that macroalgae cultured in the vicinity of the 

salmon cages will utilise the excess nutrients generated. The most frequently limiting 

nutrient for seaweeds in coastal waters is nitrogen. In temperate areas, nitrogen is 

available to the algae as nitrates for much of the year  (Lobban and Harrison 1996). On 

the Scottish north west coast, nitrates become limiting in summer (Gillibrand et al. 

2003) which can result in a dieback of macroalgae (Rhyther and Dunstan 1971). 

Macroalgae have also been shown to utilise ammonium as a nitrogen source and some 

algae have demonstrated differential uptakes of ammonium and nitrate with a 

preference for ammonium (Lobban and Harrison 1996). 

 

Ammonium concentrations in the vicinity of fish farms are elevated as a result of 

excretion by the fish (Handy and Poxton 1993a). Growth of macroalgae may be 

enhanced for much of the year by growing them adjacent to salmon farms. In summer, 

ammonium could be the principal source of nitrogen for macroalgae close to fish farm 

cages and enable an extension of the growing season. 

 

Current knowledge suggests peaks in the concentration of ammonium adjacent to 

salmon cages relates to the timing of feeding the salmon (Ahn et al. 1998; Pitta et al. 

1998; Karakassis et al. 2001; Karakassis et al. 2005), however, there is little 

information available on the distribution of the ammonium around the cages and how 
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far and for what period of time the plume extends from the cages. This information is 

necessary for determining placement of seaweeds for culture in order to maximise any 

benefit. 

 

The aims of research detailed in this chapter were to determine: 

• ambient levels of nutrients in the vicinity of Loch Duart Ltd. fish farms 

(section 2.1) 

• ammonium concentrations in the immediate vicinity of Loch Duart Ltd. fish 

farms (section 2.2) 

• patterns of distribution of and distance that enhanced nutrients extend from 

cages (section 2.3) 

• temporal variation in ammonium concentration around the fish farms 

(section 2.4). 
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Background 

Approximately 8% of fish feed is nitrogen and nearly 50 % of this nitrogen finishes up 

as dissolved in the water column. For every 1200 g of fish feed, at least 46 g of nitrogen 

is lost to the environment in the dissolved form (see chapter 1). 

 

The greater proportion of nitrogen excreted by teleost fish such as Atlantic salmon 

(Salmo salar) is as ammonia (90%) and the remainder consists principally of urea. The 

excretion of ammonia is energetically less expensive than converting ammonia to urea 

via the ornithine urea cycle (five high-energy phosphate bonds consumed per one urea 

molecule produced (Dosdat et al. 1996; Wright and Land 1998)). 

 

The equilibrium between un-ionized ammonia (NH3) and ionized ammonium (NH4
+), 

that has a pK of 9.24 at 25oC (as described by the Henderson-Hasselbalch equation), is 

affected strongly by pH and much less by temperature. Alkaline pH and higher 

temperature favour the un-ionized form. As an approximation, at pH 9.3, about 50% of 

ammonia is un-ionized; at pH 8.3, about 10% is un-ionized; and, at pH 7.3, about 1% is 

un-ionized. Volatilization is thus enhanced at elevated pH due to equilibrium 

relationships and the resultant increase in the partial pressure of ammonia gas (as 

described by Henry’s Law). The pH of seawater is considered to be very stable with 

small fluctuations between 7.5 and 8.5. Ammonia volatilization is not important at pH 

<7.5. (Hargreaves 1998). Modelling of a temperate wastewater pond showed that 

ammonia volatilization is inconsequential as a mechanism of nitrogen removal (Ferrara 

and Avci 1982). For the purposes of this project, the ammonia excreted by the fish is 

assumed to be converted to ammonium and is the main nutrient tested. 
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The post-prandial pulse of ammonia excretion in salmonids is well documented. 

Excretion rates may vary according to unimodal or polymodal rhythms depending on 

the frequency of feeding (Kaushik and Cowey 1991). The amplitude and timing of the 

peak rate is dependent on the amount of nitrogen intake by the fish. The maximum or 

peak ammonia excretion rates of salmonids occurs within 3-5 hours after a meal and is 

usually 30-60% higher than daily mean rates (Brett and Zala 1975; Kaushik and Cowey 

1991; Forsberg 1997). 

 

At Loch Duart Ltd. the daily timing of fish feeding is dependent on the size and age of 

the fish. At each feeding session, fish are fed until there is a marked reduction in surface 

activity and then they are not fed again for at least two hours. When fish are first 

introduced to the sea between February and May (first year fish) they are fed four times 

a day with the farm operating a split shift so that fish can begin feeding early in the 

morning soon after daybreak. After three months, the feeding is reduced to three meals a 

day and for the final seven months (second year fish) it is reduced to two meals a day. 

Feeding is restricted to daylight hours. 

 

Pilot Study 

A pilot study (Kelly, unpubl.) was conducted on nutrient availability in May 2001 prior 

to the start of this project to confirm the presence of elevated nutrient concentrations 

around fish farms that would support macroalgal growth. This was conducted adjacent 

to one of Loch Duart Ltd.’s cage-farm sites (Badcall Bay) which was stocked with year 

one sea winter salmon, a total biomass of 350 tonnes. The sample sites were: A, the 

centre of the raft of cages; B, 25 m north east of the cage group; C, 25 m south west of 

the cage group and D, an offshore site, considered to be out of the zone of influence of 

the farm. The analysis was restricted to ammonium as most of the dissolved inorganic 
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nitrogen (DIN) originating from salmon sea-cage farms is found in this form (Petrell et 

al. 1993). 

 

The data showed elevated ammonium levels at sites A, B and C that were typical of 

those at a sea-cage (Petrell et al. 1993).  The levels at site A were significantly greater 

than those at B, levels at site B and C were equivalent (Table 2.1). Ammonium 

concentrations ranged from 2.7 – 3.9 μM at a depth of 3 m at sites A, B and C. At 10 m 

depth the ammonium levels were an order of magnitude lower and equivalent to those at 

the offshore site (mean 0.46 μM). 

 
Table 2.1 Mean ammonium (μM) levels for replicate 0.2 μm filtered seawater samples 
taken in the vicinity of salmon cages. 

μM ammonium Surface 3 m 10 m 
A on cage raft 3.2 3.9 0.4 
B 25 m N-E - 2.8 0.7 
C 25 m S-W - 2.8 0.3 
D offshore site - 0.3 0.6 

 
Site Selection 

At Loch Duart Ltd. farms, young salmon are transferred to sea between February and 

April when they are approximately 200 g. They are held in pens for 18 months and 

graded according to size until they reach approximately 5 kg. Sites for conducting 

seaweed culture and monitoring of seawater for nutrients were chosen on the basis of 

having maximal biomass of cultured salmon for each season. These were usually sites 

where fish were coming into their final six months starting in late winter-early spring. 

Addition of feed to the pens and excretion of wastes are at a maximum for a site during 

this period, thus maximising the impact and increasing the likelihood of detecting 

differences in ammonium concentrations. In 2003 this was at Laxford, in 2004, at 

Calbha, and in 2005 at Badcall (see Figures 2.1 a, b and c and chapter 1). 
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Figure 2.1 a) Location of salmon cages (with associated walkways) and nutrient 
sampling stations at Badcall Bay. Letters are walkway identification labels. ‘F’ 
walkway had a seaweed longline attached in 2005. Nutrient sampling stations in 2005 
were sited adjacent to buoys as noted by small stars and site names in this figure (‘LL’ = 
longline). 
 

 
Figure 2.1 b) Location of salmon cages and nutrient sampling stations at Calbha. The 
larger star indicates a reference sampling station remote from cages. ‘D’ walkway had 
longlines attached in 2004. 
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Figure 2.1 c) Map showing location of salmon cages and nutrient sampling station at 
Loch Laxford. The star indicates a reference sampling station remote from cages. ‘F’ 
walkway had longlines attached in 2003. 
 

As a result of the increasing biomass of fish cultured on European coasts each year, 

nutrient inputs to coastal waters from fish farms have been under increasing levels of 

scrutiny internationally. There is concern that fish farming may contribute to 

eutrophication of coastal waters.  In general, under eutrophic conditions nutrient 

concentrations are increased, primary production (possibly including nuisance species) 

is increased, and organic enrichment of the bottom sediments leads to increases in 

oxygen consumption as the excess material decomposes. Under exceptional conditions, 

serious depletion of oxygen levels in the water can occur, especially in areas where 

water mixing is restricted, such as in deeper waters below the halocline, or in shallower 

waters affected by thermal stratification during the summer. Depletions in oxygen 
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concentration have been associated with kills of benthic fauna and fish 

(www.helcom.fi). 

 

Under ‘Convention for the Protection of the Marine Environment of the North east 

Atlantic’ (OSPAR), five Ecological Quality Objectives related to Eutrophication  

(EcoQOs) have been defined to reflect the eutrophic state of coastal waters. These are 

more specific with regard to physico-chemical criteria for assessing water quality than 

the EC Water Framework Directive (OSPAR 2004). 

 

The EcoQOs agreed at the 5th North Sea Conference (Bergen-Declaration 2002) are: 

A. Winter DIN and/or DIP (dissolved inorganic phosphate) should remain below 

a justified salinity-related and/or area-specific percentage deviation from 

background not exceeding 50%; 

B. Maximum and mean chlorophyll a concentrations during the growing season 

should remain below a justified area-specific percentage deviation from 

background not exceeding 50%; 

C.  Region/area-specific phytoplankton eutrophication indicator species should 

remain below respective nuisance and/or toxic elevated levels (and there should 

be no increase in the duration of blooms); 

D. Oxygen concentration, decreased as an indirect effect of nutrient enrichment, 

should remain above area specific oxygen assessment levels, ranging from 4-6 

mg oxygen per litre; 

E.  There should be no kills in benthic animal species as a result of oxygen 

deficiency and/or toxic phytoplankton species. 
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These were developed in parallel to, and derived from, the “Comprehensive Procedure”, 

that was established to assess and classify the eutrophication status of the OSPAR 

maritime area into problem areas, potential problem areas, and non-problem areas 

(OSPAR 2005). 

 

The assessment parameters which relate to nutrient enrichment and thus are relevant to 

this project are: 

1. Riverine total N and total P inputs and direct discharges (RID) 

Elevated inputs and/or increased trends 

(compared with previous years) 

2. Winter DIN and/or DIP concentrations 

Elevated level(s) (defined as concentration >50 % above salinity 

related and/or region specific background concentration) 

3. Increased winter N/P ratio (Redfield N/P = 16) 

Elevated ratio is > 25. 

 

Increased winter N/P ratios (compared to the Redfield ratio = 16) and absolute excess of 

nitrate may increase the risk of nuisance and toxic algal species, while increased ratios 

of N/Si (> 2) and P/Si (> 0.125) may cause shifts in species composition (from diatoms 

to flagellates, some of which are toxic). 
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2.1 Ambient Nutrient Concentrations 

 
The aim of this section was to determine the ambient concentrations of nutrients, 

particularly nitrogen based nutrients, in waters surrounding the Loch Duart Ltd. salmon 

farms. 

Methods 

Seasonal samples 

From June 2003 until June 2005, at 4-6 week intervals, ‘ambient’ seawater samples 

were taken from sites at least 500 m distant from the principal farm site cages where 

seaweed culturing and monitoring was taking place for that year (Laxford in 2003, 

Calbha in 2004 and Badcall in 2005). Samples were taken using a Nisken bottle set to 

collect seawater at a depth of 4 m. Samples were collected at this depth because it is the 

depth at which the caged salmon commonly swim (farm personnel, pers. com.) so 

excreted products such as ammonium are likely to be concentrated. It is also the mid-

depth for photosynthesis for the seaweeds to be cultured and is not as affected as the 

surface by stratification of the water column as a result of freshwater inputs or 

thermoclines. Kelly’s (unpubl.) original pilot study showed very low levels of 

ammonium at 10 m depth and this has also been noted by others e.g. Karakassis et al.  

(2001) and SAMS based studies: Biofaqs  (2003) and Pete (pers com). 

 

Seawater samples were poured from the Nisken bottle into a 100 ml syringe and filtered 

through Whatman 0.45 μm filters into acid washed bottles. The sample bottles were 

kept cool and within hours transferred to a deep freezer (-20oC). Ammonia is known to 

be a volatile chemical and cooling the samples limits dispersal of this compound. The 

samples remained in the deep freeze until analysed. All samples were analysed for 

nitrate, phosphate and ammonium. As silicate is not required for growth of macroalgae 
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and, early in the sampling programme, nitrite concentrations were found to be very low 

in contrast to nitrate and ammonium, not all samples were analysed for this ion. 

Analyses were conducted for ammonium, nitrate, nitrite, silicate and phosphate using a 

Lachat flow injection autoanalyser (QuickChem 8000). 

Results 

Ambient concentrations of nutrients 

Ambient nitrate concentrations varied seasonally across all sites ranging from 0 to 

approximately 7 μM, with a peak in December – January and lowest levels from late 

May to early August (see Fig. 2.3). Ammonium concentrations were variable and up to 

2 μM but mostly approximately 1 μM with more elevated levels in June to July and 

lows from November to February (see Fig. 2.3). Phosphate concentrations followed a 

similar pattern to the nitrate (see Fig. 2.3 and 2.4) with peaks of 0.4 to 0.8 μM but 

commonly approximately 0.4 μM. When measured, nitrite levels were low (278 

readings, max: 0.5 μM, average: 0.09 μM, se: 0.006 μM) and not considered a 

significant source of nitrogen at the sites. Silicate was only sampled in June and July 

1993 at Loch Laxford and values varied from 0.1 to 1.0  μM (50 readings). 

 

The OSPAR harmonised Eutrophication Assessment criteria (OSPAR 2004) 

recommended upper assessment concentrations for the UK for winter DIN and DIP of 

10 μM  and 0.8 μM which would correspond to 50% above ambient winter 

concentrations of approximately 6.7 and 0.53 μM respectively. These ambient values 

are less than the maximum ambient winter values for nitrate and phosphate recorded as 

part of this project (7.4 and 0.8 μM respectively). However, only one value of all ‘away 

from farm’ or ambient seawater samples analysed (105 samples) exceeds the upper 

assessment concentrations and was not measured in winter (Figure 2.3 a).  Critical 
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values for the N:P ratio relative to critical values of the Redfield ratio used for 

determining eutrophication status are also plotted. They show that the majority of the 

winter values are close to the Redfield ratio of 16:1 and very few are above the 25:1 cut 

off mark for distinguishing problem areas. We might expect some elevated values due 

to the relative proximity of the samples taken to fish farms. Most of the elevated values 

are for Badcall Bay which is a more enclosed site and thus likely to have less exchange 

with coastal waters. Ammonium in this bay is also likely to have a higher residence 

time and there will be some build up of nitrogen in the bay. 
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Figure 2.2 Variation in a) nitrate, b) ammonium and c) phosphate concentration for 
ambient waters in the vicinity of the fish farm cages, Loch Duart Ltd. 
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Figure 2.3 Total inorganic nitrogen (TIN) and corresponding phosphate concentrations 
determined for Loch Duart Ltd. sites 2003-2005 for a) all samples and b) winter 
samples only. a) The two lines are the N:P ratio lines 25:1 (solid) and 16:1 (dashed) for 
comparison. b) The winter TIN:P values exceeding 25:1 are primarily Badcall Bay 
samples taken in February 2004. 
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2.2 Nutrient Enhancement around Salmon Farms 

 
The aim of this section was to confirm the enhancement of nutrients in the vicinity of 

salmon farms, especially ammonium and seasonal differences. Sampling was confined 

principally to the peak growth season of the algae concerned (Palmaria palmata and 

Laminaria saccharina): winter, spring and early summer. 

 

Methods 

In conjunction with the Atlantic Arc Aqua Group (AAAG) project, also based within 

the Invertebrate Marine Biology section of SAMS, seawater samples were collected on 

a regular basis in Calbha and Badcall Bays, close to and at distance from salmon cages 

(Calbha was a fallow site in 2005 i.e. no fish cages during this sampling). The AAAG 

project was investigating protein levels in wild Palmaria palmata in relation to 

proximity to salmon farms. Samples were taken as part of this thesis to correlate with 

growth and production of cultured Palmaria palmata and Laminaria saccharina at 

Calbha and Badcall (see Chapter 6). 

 

Samples were collected at 4 m depth monthly from February 2005 to June 2005. At 

each sampling session, three samples were collected from sites adjacent to the three 

salmon cage sets in Badcall Bay (three sites: FarmEast, FarmSouth and FarmNorth) and 

at distance (seven sites: Sheltered, BadcallLL, OutsideSW, OutsideMS, OutsideSE, 

CalbhaRef and CalbhaLL; see maps in Figures 2.1 a) & b). The samples collected at the 

salmon farm cages (‘Farm’) were collected either from the walkway on the sides of the 

cages or from a small dinghy tied up to the cages, i.e. 2-10 m from the nets containing 

the salmon. The samples were collected at the same locations on each sampling date 
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without particular reference to currents, tides or stage in the salmon feeding process. 

The water samples were collected, treated and analysed as described in the previous 

section. 

 

Within the bay at Calbha, during the sampling period, salmon biomass was decreasing 

as fish were being successively harvested from the cage groups (Chapter 1: Figure 1.5). 

Fish were emptied from walkway C in January, E in February and D in May (Figure 

2.1b). Badcall had increasing levels of salmon over the same period (Chapter 1: Figure 

1.5). 

 

Statistical analysis 

Sites were compared for each sampling session using one way analysis of variance. 

Data were checked for normality (Anderson-Darling) and homogeneity of variance 

(Bartletts and Levenes tests). Transformations of the data were done where necessary 

(natural log) and post hoc tests were conducted using Tukey tests. Where present, error 

bars presented on graphs are 95% confidence intervals. Statistics packages used were 

Excel, JMP IN (SAS Inst Inc) and Minitab. 

Results 

Ammonium 

The results for ammonium only are considered here as the other nutrients (nitrate and 

phosphate) showed no difference with proximity to salmon farm cages. On the five 

occasions that nutrients were sampled (not all sites were sampled on 28/4/2005 due to 

weather and time restrictions), there were significant differences between the farm sites 

and all other reference sites (sites pooled, Figure 2.4 and Table 2.2) for ammonium. 

Mean ammonium concentrations adjacent to the salmon farm cages ranged from 1.5 to 

6.8 μM with most occurring in the 1.5 to 3 μM range.  These values were 0.6 to 4.2 μM 
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greater than mean ammonium values measured away from the farm sites. Of the 

reference sites, the ‘sheltered’ site and the mid south (OutsideMS) site were consistently 

higher than the other reference sites and the Badcall Bay sites were consistently higher 

than the Calbha Bay sites. 

 

Concentrations of ammonium in Badcall Bay sites may be higher than Calbha sites due 

to the more enclosed nature of Badcall Bay. There is less opportunity for the free 

exchange of seawater and this may lead to some entrapment of ammonium within this 

system. This would also explain why the ‘sheltered’ site in particular is consistently 

higher than the rest. The ‘Mid South’ site may be higher as this may be the ‘escape 

route’ for ammonium from Badcall Bay. 
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Figure 2.4 Mean ammonium concentrations at 10 sites in Badcall and Calbha Bays 
(three Badcall farm sites on the left) for the dates noted. See the lowest axis for site 
names (vertical bars indicate 95% CI). 
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Table 2.2 Summary of ANOVA results for comparison of farm sites versus non- farm 
sites for ammonium concentration (Site nested within Farm); df - degrees for freedom 
for F ratio, F ratio and significance level (p) for farm versus non-farm and site analyses. 

Date Farm 
F: df 

 
F 

 
p 

Farm Conc. 
Mean (μM) 

Non-Farm 
Conc. 
 Mean (μM) 

Site 
F: df 

 
F 

 
p 

25/02/2005 F (1,20) 15.4 <.0001 1.7 0.7 F (8,20) 0.7 ns 

30/03/2005 F (1,20) 235.9 <.0001 2.1 0.9 F (8,20) 52 <.0001 

28/04/2005 F (1,12) 62.4 <.0001 1.5 0.9 F (4,12) 73.4 <.0001 

01/06/2005 F (1,20) 30.6 <.0001 2.2 1.4 F (8,20) 1.8 ns 

22/06/2005 F (1,20) 34 <.0001 6.8 2.6 F (8,20) 4.8 <.01 
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2.3 Extent of the nutrient plume around the cages. 

 
The aim was to determine the extent of the plume of ammonium about the fish farm 

cages. This information would assist in predicting the location of enhanced ammonium 

concentrations and the optimal positions for any seaweed cultures to maximise nutrient 

interception. 

Methods 

Three intensive nutrient monitoring programs (‘snapshots’) were conducted to 

determine dispersive patterns of the effluent plume, two of these were at Laxford 

(3/7/2003 and 31/7/2003) and one at Calbha (5/5/2004). These nutrient sampling 

sessions were conducted at the same time as drogues; current meters and weather 

stations were deployed adjacent to the farm.  

 

Intensive ‘snapshot’  sampling 

At Laxford, on each of 03/07/2003 (12:00 to 15:00GMT) and 31/7/2003 (9:30 to 

13:30GMT) a total of 48 samples were collected from the waters in the immediate 

vicinity of the Laxford sea cages at ‘F’ walkway to 50 m. The samples were taken in a 

grid pattern about the cages. Distances were chosen on the basis of two previous pilot 

sampling sessions that indicated elevated ammonium to at least 25 m from the cage 

group (Kelly unpubl., Sanderson unpubl.). On each transect, six samples were taken at 4 

m depth and 10 m apart, 0, 10, 20, 30, 40 & 50 m, starting closest to the cages. The 

dinghy was maintained at each station, when sampling, using a rope marked at 

designated distances attached to the cages. Transects were run from the corners and the 

mid points of the sides of the farm cages (i.e. eight transects, see Figure 2.6). On the 

first session at Laxford, transects were sampled sequentially. Due to the time lapse 
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between the first and last transect, and the possibility of pulses of nutrients influencing 

determined nutrient plumes, transects were sampled in no particular order around the 

cages on the second and third sampling snapshots. 

 

The third sampling session was conducted at the Calbha ‘D’ walkway on 5/5/2004 (9:00 

to 14:30 GMT). To maximise results for sampling effort, only four samples were 

collected on each transect at distances of 0, 15, 30 and 45 m, all at 4 m depth. Transects 

were run from each corner and the mid-point of the ends of the cage group and two 

from the sides (i.e. 10, see Figure 2.6). Further samples were taken in the direction of 

drogue movements and randomly at distances of up to 200 m from the cages. The water 

samples were collected, treated and analysed as described previously. 

 

Nutrient snapshots were conducted at the same time as current meters and drogues were 

deployed adjacent to the seacages. The results from these aided in interpretation of 

nutrient distribution data. 

 

Current meters 

Type S4 (InterOcean Systems Inc. San Diego CA USA, S4 electromagnetic current 

meter: Sampling rate 2Hz, averaging for 1 minute in every 10) and ADCP (RD 

Instruments, San Diego, CA, USA Workhorse Sentinel 600kHz Acoustic Doppler 

Current Profiler Ensemble length 10 minutes, 200 pings per ensemble, standard dev 0.2 

cm/s) current meters were used to determine current speed and direction at points close 

to the cages. Type S4 current meters determine current directions through variations in 

an electromagnetic field caused by the water flow. The ADCP (Acoustic Doppler 

Current Profiler) measures current speed and direction for a number of depth bands ( = 

‘bins’) in the water column through the use of acoustic technology.  Current meters log 
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direction and speed of the seawater for user defined intervals and lengths of time. The 

number of readings is determined by the battery life and the amount of memory the 

machine has which, in turn, determines the amount of time the current meter can be 

deployed for. 

 

At Loch Laxford ‘F’ walkway two S4 current meters were deployed, one near the 

surface (1 m depth at spring low) and one close to the bottom (3 m) in ca. 18 m depth 

(MSL) at 949,969 N 218,866 E (Brit OS Grid) at a distance of 130 m SE of the cages 

from 3/7/2003 to 27/8/2003 with readings recorded every ten minutes. 

 

At Calbha ‘D’ walkway two sets of current measuring apparatus were deployed to get a 

better perspective of water movement around the cages. An ADCP was deployed at 

937,273 N, 215,571 E approximately 60 m north of the north east corner of the cages in 

ca. 35 m of water (MSL). This recorded current speed and direction in 2 m ‘bins’ 

throughout the water column i.e. approximately 15 bins. Two S4s were deployed 

approximately 20 m south of the south east corner of the cage at 937,094 N 215,643 E 

in ca. 21 m of water (MSL) also from 3/7/2004 to 27/8/2004 with readings being 

recorded every ten minutes.  One of the S4s was at 2m depth at low tide and the second 

was situated 5 m below the first. 

 

Current meters are used to measure water speeds at their location. Ideally, a grid of 

current meters deployed at varying depths would give the most comprehensive picture 

of current patterns about a salmon farm cage group. This, however, is not practicable 

due to the cost of current meters and the logistics involved in placing multiple current 

meters on a working salmon farm. Also, often real time knowledge of currents is 

required and this is not possible with current meters that log data that subsequently 
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needs to be downloaded and analysed. Knowledge of current patterns is augmented 

through the use of drogues that track currents in real time. Data from meteorological 

stations in conjunction with known tidal movements were also used as an aid in the 

interpretation of current meter and drogue results. 

 

Drogue methodology  

Drogues with Differential Global Positioning System (DGPS) technology were used to 

track water movements about the farm cages throughout the time of intensive seawater 

sampling sessions (second two snapshots only).  The drogues consisted of a surface 

buoy containing a GPS and drifter sock in the water column. The depth of the middle of 

the drifter sock can be set at the depth of interest which, in this case, was 4 m (the depth 

at which seawater samples were to be taken). Each of the drogues communicated their 

position to a base station every 30 seconds. A laptop computer at the base station 

calculated their position to the nearest meter and recorded these values (accuracy as 

follows determined from bench tests: 57 % +/-1 m, 83 % +/- 2 m, 99 % +/-3 m, Cromey 

pers com). Two different strategies were used in drifter deployment: a group 

deployment for calculation of a dispersion coefficient, and a widely spaced deployment 

to determine current patterns about the cages. 

 

Grouped arrangement for dispersion coefficient 

A group of DGPS drifting buoys were released near the cages to assess dispersion 

potential of the site. This allowed tracking of water movements and calculation of 

dispersion coefficients for use in modelling and general site investigation. The 

dispersion coefficient is a factor taken into account by SEPA when assessing the 

loading levels of fish for a site.  Buoys were released as close as possible to one another 

without affecting each other’s movement. Their positions were recorded after release 
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and plotted. Their position relative to each other and their rate of movement is used to 

calculate a dispersion coefficient for the site (see Figure 2.5, Cromey pers com after 

Yanagi et al. (1982). 

 

The dispersion coefficient relates to the change in area taken up by drifting buoys over 

time and is presented for two axes as ‘kx’ and ‘ky’. The table below (Table 2.3) presents 

coefficients for a range of water bodies. Land-locked water bodies and those that 

depend on the wind for mixing generally have lower coefficients. High coefficients are 

commonly reflective of tidal systems. 

 
Table 2.3  A summary of measurements of horizontal dispersion coefficients made by 
Cromey (SAMS) during DGPS drifting buoy surveys (BF = Beaufort Scale).  All sites 
were tidal with the exception of the inland freshwater loch and eastern Mediterranean 
sites which were primarily wind–driven sites (Cromey, pers. com). kx and ky are length 
in two axes perpendicular to each other of area taken up the drifting buoys. 
General site description Run length 

(hrs) 
kx (m2 s-1) ky (m2 s-1) 

Loch Sunart (BF 5) 2.7 0.68 0.01 
Loch Diabaig 3.3 0.10 0.31 
Loch Kishorn 4.2 0.28 0.11 
Loch Craignish 2.9 0.03 0.09 
Sea loch narrows above sill 1.6 0.02 0.69 
Sound of Mull (strait) 1.7 0.25 0.19 
Sound of Mull (inshore eddy) 2.1 0.79 0.32 
Sound of Mull (main channel) 1.6 14.80 0.46 
Inland fresh water locha - calm (BF 2) 1.1 0.02 0.00 
                                      - windy (BF 4) 1.0 0.07 0.12 
Eastern Mediterranean - Simi 2.5 0.00 0.03 
Eastern Mediterranean - Chios 2.9 0.17 0.00 
Eastern Mediterranean - Korinthiakos 1.4 0.42 0.15 
SEPA management model value 
(theoretical) 

NA 0.10 0.10 

a Primarily wind driven or non-tidal 
 
 

Widely spaced deployment for determination of current patterns 

Up to 6 drogues were placed regularly around the cage system, at least 25-50 m from 

the cages to limit the chances of snagging on mooring chains and to limit the chance sof 

them stalling against the cages. Recording of position on a regular basis and later 
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plotting enabled direction and speed of currents with respect to the cage system to be 

determined. 

 

17 cm

66 cm

2 m

5 m
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Pellet float

 
Figure 2.5 Diagram showing drogues consisting of DGPS drifters and sock and typical 
deployment near a fish farm (Acknowledgement: Chris Cromey). 
 
Meteorological station 

To enable an assessment of the influence of the wind on currents if required, a Davis 

Meteorological station was deployed on site. This machine records temperature, wind 

speed and direction and pressure. This was placed on the salmon cages with a wind 

vane erected on a pole so that the wind was measured above the level of the salmon 

cages and therefore not influenced by factors at the level of the cages. 
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Results 

Intensive nutrient sampling sessions 

The colour figures (Figures 2.6 – 2.8) following indicate the distribution of ammonium 

around the fish cages for the July 2003 and May 2004 intensive sampling occasions. 

They indicate elevated ammonium levels up to 3.5 μM, 50 m from the cage groups, 

with enhanced concentrations extending 200 – 300 m from the cages. Levels of 

phosphate, nitrate, nitrite and silicate were close to ambient. All three sessions indicate a 

pooling of ammonium on the inside of the cages towards the adjacent islands. At 

Laxford (Figures 2.6 & 2.7), both snapshots show directional biases in ammonium 

concentration, with a sharp decline in concentrations in the north east direction from the 

cages and enhanced concentrations extending in a southerly easterly and north westerly 

direction. At Calbha (Figure 2.8) there are reduced concentrations of ammonium in the 

north with enhanced concentrations in a southerly and easterly direction.  
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Figure 2.6 a) Nutrient maps generated from nutrient data collected in a grid pattern 
around the cages adjacent to Eilean Ard in Loch Laxford, determined 12.00 – 15:00 
GMT, 3/7/2003.  denotes sampling point. Depth: 20-30 m. 
 

Laxford, 12:00 to 15:00, 3/7/03.
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Figure 2.6 b) Current directions during 3/7/2003 ‘snapshot’ at Loch Laxford. Readings 
were taken every ten minutes (horizontal axis), units are cm s-1. Data are from a surface 
current meter approximately 100 m south east of the cages. 
 
Tides on 3/7/2003: 

Low Tide 10:30 GMT, 4.52 m 
High Tide: 4:34 GMT, 1.34 m 

 
Fish biomass at walkway: 287 tonnes. 
 

μM NH4
+ 
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Table 2.4 Fish feed supplied to F walkway salmon stock, Loch Laxford, prior to survey 
on 3/7/2003. 

DATE Kgs of 
feed 

30/06/2003 3331 
01/07/2003 1564 
02/07/2003 2931 
03/07/2003 2256 

 
 

 
Figure 2.6 c) Mean ammonium concentrations for the eight transects about ‘F’ 
walkway, Loch Laxford, 3/7/2003 (vertical bars indicate 95% CI). 
 

 
Figure 2.6 d) Mean nitrate concentrations for the eight transects about ‘F’ walkway, 
Loch Laxford, 3/7/2003 (vertical bars indicate 95% CI). 
 

 
Figure 2.6 e) Mean phosphate concentrations for the eight transects about ‘F’ walkway, 
Loch Laxford, 3/7/2003 (vertical bars indicate 95% CI). 
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Figure 2.6 f) Mean silicate concentrations for the eight transects about ‘F’ walkway, 
Loch Laxford, 3/7/2003 (vertical bars indicate 95% CI). 
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Figure 2.7 a) Map showing movement of drifters for calculating the dispersion 
coefficient F walkway, Loch Laxford (30/7/2003). Drifters were released 11.30 GMT 
and retrieved at 3.30 GMT. 
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Figure 2.7 b) Current directions during dispersal event on 30/7/2003 at Loch Laxford, F 
walkway. Readings were taken every ten minutes (horizontal axis); units are cm s-1. 
Data are from a surface current meter approximately 100 m south east of the cages. 
 
Tides on 30/7/2003: 

High Tide: 8:43 GMT, 4.78 m. 
Low Tide: 14:53 GMT, 1.15 m. 
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Figure 2.7 c) Ammonium distribution around cages adjacent to Eilean Ard in Loch 
Laxford determined 9.30– 13:30 GMT, 31/7/2003. ’ ’ denotes sampling points. 
 

 
Figure 2.7 d) Nutrient map with drogue movements during sampling time. Drogues 
released within 25 to 50 m from F walkway, Loch Laxford, (31/7/2003). 
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Laxford, 9.30 to 13.30 pm, 31/7/03
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Figure 2.7 e) Current directions during dispersal event at Loch Laxford on 31/7/2003. 
Readings were taken every ten minutes (horizontal axis); units are cm s-1. Data are from 
a surface current meter approximately 100 m south east of the cages. 
 
Tides on 31/7/2003 

High Tide: 9:30 GMT, 4.84 m. 
Low Tide: 15:41 GMT, 1.05 m. 

 
Fish biomass at walkway: 294 tonnes. 
 
Feed to Laxford ‘F’ walkway prior to survey on 31/7/2003: 
 

DATE Kgs of 
feed 

28/07/2003 1733 
29/07/2003 2249 
30/07/2003 1858 
31/07/2003 1908 

 

 
Figure 2.7 f) Mean ammonium concentrations for eight transects about ‘F’ walkway, 
31/7/2003 (vertical bars indicate 95% CI). 
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Figure 2.7 g) Mean nitrate concentrations for eight transects about ‘F’ walkway, 
31/7/2003 (vertical bars indicate 95% CI). 

 

 
Figure 2.7 h) Mean phosphate concentrations for eight transects about ‘F’ walkway, 
31/7/2003 (vertical bars indicate 95% CI). 
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Figure 2.8 a) Ammonium concentrations to 45 m from the cages interpolated from 
samples collected adjacent to Calbha ‘D’ walkway, 9.00 to 14.30 GMT on 5/5/2004. 
‘ ’ denotes sampling point. Drogue movements are superimposed on the nutrient 
sampling results. Drogues were released 30-50 m from the cages. Arrows show their 
direction of movement. Ammonium concentrations a) to 45 m; b) greater than 45 m 
from the cages. 
 

 
Figure 2.8 b) Ammonium concentrations greater than 45 m from the cages 
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Figure 2.8 c) Currents measured during the nutrient sampling on 5/5/2006. Current 
directions at 5 m and 10 m depth as measured by current meters located 20 m from the 
south west corner of cages. The bottom diagram shows surface currents measured by an 
ADCP current meter approximately 70 m north of the northern end of the cages. 
Readings taken every ten minutes, units are cm sec-1. 
 

Tides on 5/5/2004 
High Tide: 7:52 GMT   5.24 m 
Low Tide: 14:27 GMT   0.37 m 

 
Fish biomass at walkway: 280.5 tonnes 
 
Feed to Calbha ‘D’ walkway prior to survey on 5/5/2004: 
 

DATE kgs of 
feed 

02/05/2004 0 
03/05/2004 0 
04/05/2004 1651 
05/05/2004 1592 
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Figure 2.8 d) Mean ammonium concentrations for the eight transects about ‘D’ 
walkway, Calbha, 5/5/2005 (vertical bars indicate 95% CI). 
 

 
 
Figure 2.8 e) Mean nitrate concentrations for the eight transects about ‘D’ walkway, 
Calbha, 5/5/2005 (vertical bars indicate 95% CI). 

 

 
 

Figure 2.8 f) Mean nitrite concentrations for the eight transects about ‘D’ walkway, 
Calbha, 5/5/2005 (vertical bars indicate 95% CI). 
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Figure 2.8 g) Mean phosphate concentrations for the eight transects about ‘D’ 
walkway, Calbha, 5/5/2005 (vertical bars indicate 95% CI). 
 

Drogues 

Drogues were released in two different patterns with differing aims: 

1. to determine the dispersion coefficient and 

2. to monitor the fate of currents in the vicinity of the cages while 

intensive nutrient sampling was being conducted. 

 

Grouped arrangement for dispersion coefficient 

At Laxford, cage group ‘F’, on 30/7/2003, for the period from 12.00 to 15.20 GMT, the 

drogues dispersed away from the salmon farm to a distance of 300 m (Figure 2.7a, b). 

The maximum recorded speed of any one drifter over this period was 5.5 cm sec-1 with 

a mean speed of 2.7 cm sec-1. Wind was from a northerly direction with a mean speed of 

1.7 m sec-1. This trial was during an outgoing tide and gave calculated dispersion 

coefficients of 0.073  m2 s-1 (kx) and 0.006  m2 s-1 (ky). 

 

At Calbha, cage group 'D’, on 6/5/2004, for the period from 9.00 to 11.07 GMT, the 

drogues dispersed away from the salmon farm in a north westerly direction to a distance 

of 280 m  with a mean speed of 4.2 cm sec-1. Wind was from an easterly direction with 
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a mean speed of 5.5 m sec-1.  This trial was performed during an outgoing tide and gave 

calculated dispersion coefficients of 0.070 m2 s-1 (kx) and 0.026 m2 s-1 (ky). 

 

Widely spaced deployment 

At Loch Laxford on 31/7/2003, drogues were deployed about the farm on an outgoing 

tide. Mean speed of the drogues was 3.1 cm s-1 and the maximum for any given time 

was 14.4 cm s-1. Their dispersal pattern indicated that there were eddying currents about 

the farm in a counter clockwise direction (Figure 2.7d). They also indicated a strong 

ebbing current (speeds up to 14.4 cm s-1) that flowed out the main channel of Loch 

Laxford at the northern end of the cage system. This current partly impinged on the 

northern end of the cages resulting in a lowering of ammonium levels in this area. One 

drogue went out with the outgoing tide and stopped in behind Eilean Ard suggesting 

that there may be some pooling of effluent products in this area which has implications 

for the later nitrogen isotope analysis (see chapter 7). 

 

Calbha 

On 5/5/2004, drogues were deployed at the time of an outgoing tide (Figs 2.9 a, b). 

Mean speed of the drogues was 1.5 cm s-1 and the maximum for any given drogue was 

3.9 cm s-1. Their dispersal pattern indicated currents coming into this part of the bay 

from the north impinging on the northern end of the cages. The current continues 

parallel to the coast, round and then into the main channel in the centre of the bay where 

it is likely to flow out of the bay with the outgoing tide. There was some eddying of 

currents on the western and south western sides of the cages. 

 

All three snapshots indicate ammonium distributions consistent with determined current 

patterns. Where the currents impact on the cages, the ammonium plume extends for 
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little to no distance in the direction from which current comes. On the side extending in 

the direction of the current, ammonium concentrations are higher and appear to continue 

for distances of up to at least 2-300 m from the cages. All snapshots also showed 

elevated and highest concentrations on the side of the cages towards adjacent islands, on 

the downstream side of the cages with respect to currents. Water depths become 

shallower in these regions, further concentrating available ammonium. 



 55

 

2.4 Diel ammonium distributions about the salmon cages. 

 
The aim of this section was to establish the daily duration of ammonium enhancement 

in the vicinity of the cages. 

 

Methods 

Sampling was conducted at regular intervals and sites throughout the day at ‘F’ 

walkway at Calbha on 23 August 2004 (session 1) and 1 December 2004 (session 2). 

 

Session 1: 23 August 2004 

Seven sampling stations were established (Figure 2.9). A drogue with the sock set at 4 

m depth was used to determine current directions at this depth during sampling. The 

drogue was returned repeatedly to the north east corner of the cages and currents were 

determined to be moving in a northerly direction. Four of the sampling stations were 

placed at regular distances from the northern end of the fish cages as the movement of 

the tide was determined flow in a northerly direction. Water sampling was conducted at 

4 m depth as detailed previously (Section 1). One water sample was taken from each 

station per sampling round. Seven rounds were made between 10.00 and 16.00 GMT. 

The term ‘round’ refers to sampling all seven stations once. 
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Figure 2.9 Positions of seawater sampling stations with respect to cages at Calbha 
23/8/2005. 
 
Table 2.5 Start and finish times (GMT) of each sampling round at Calbha 23/8/2004. 

Round Start Finish 
1 09:30 10:38 
2 10:43 11:01 
3 11:39 12:07 
4 12:41 13:04 
5 13:59 14:29 
6 14:58 15:22 
7 15:05 16:12 

 
 

Statistical analysis 
A two way ANOVA was conducted on the data to test for differences with factors of 

time (round) and station. As there was only one replicate of each sample, Friedmans 

non-parametric test (Dytham 2003) was selected as the appropriate test for differences 

between sites and times. 
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Session 2: 1 December 2004 

Five sampling stations were established (see Figure 2.10). Movement of the tide was 

northwards from the north from the cages at the time of sampling as indicated using a 

drogue with the sock/vane set. Water sampling was conducted at 4 m depth as detailed 

previously (section 1). One sampling station was at the walkway edge at the northern 

end of the walkway (N0) and four of the sampling stations were 50 m from the mid 

points of each of the sides and ends of the fish farm cages. On this occasion, in order to 

take into account within site variation, three samples were taken at each sampling 

station per round. Four rounds were made between 10 and 16.00 GMT. For this session, 

‘round’ refers to sampling each of the five stations (three samples taken at each). 

 
 
Figure 2.10 Positions of seawater sampling stations with respect to cages at Calbha 
1/12/2004. 
 

Statistical Analysis 
Stations and rounds were compared using a two way analysis of variance. Data were 

checked for normality (Anderson-Darling) and homogeneity of variance (Bartletts and 

Levenes tests). Post hoc tests were conducted using Tukey tests. 
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Table 2.6 Start and finish times (GMT) of each sampling round at Calbha 1/12/2004. 
Round Start Finish 

1 09:03 10:55 
2 11:27 12:26 
3 13:18 14:05 
4 15:03 15:46 

 

Results 

 
Session 1: 23 August 2004 

ANOVA using Friedman’s non parametric test indicated that the ammonium 

concentrations at the 50 m south station (S50) were significantly lower than the 0 m 

north (N0) station (Figure 2.11 a & b). This is consistent with the direction of currents 

determined at the time. There were elevated levels of 1.5-2.0 μM of ammonium 

throughout the sampling period for the stations at 50 m east, west and north of the cage 

group. 

 

 

 
Figure 2.11 Overall ammonium concentrations for (a) station  and (b) round, Calbha 
23/8/2004 (vertical bars indicate 95% CI). Values which share at least one letter are not 
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significantly different at p = 0.05. 
 
Session 2: 1 December 2004 

Ammonium concentrations in sampling round 1 were significantly lower than those in 

later rounds and N0 was lower than S50 (Figure 2.12 a, b). In a 2-way analysis of 

variance, there was a significant interaction between time and distance. For round 1, N0 

was higher than the four other sampling stations; in round 2, N0 was significantly 

higher than N50 only and in round 3 N0 was significantly higher than E50, S50 and 

W50. In round 4 there was no significant difference between any sites (2 WAY 

ANOVA session: F(3,35) = 8.4, Site: F(4,35) = 12.1, Session X site: F(12,35) = 2.3). 

 

 

 
Figure 2.12 ammonium concentrations for (a) station and (b) round, Calbha 1/12/2004 
(vertical bars indicate 95% CI). Values which share at least one letter are not 
significantly different at p = 0.05. 
 

Discussion 

Ambient nutrient levels at the Loch Duart Ltd. sites fall within the range recorded for 

Scottish west coast waters (Slesser and Turrell 2005). Ammonium concentrations 
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measured close to the cages (<50 m) were enhanced when compared to sites away from 

the cages with a high of 8 μM but most ranged from 2 to 4 μM. This compares with 

measurements of 3-4 μM found by Pitta et al. (1998), 3-8 μM by Karakassis et al. 

(2001), 2-10 μM by Merceron et al. (2002) and 2-7 μM by Petrell and Allie (Petrell and 

Alie 1996). Enhancements of 1 μM ammonium were detected at distances of 200 m 

believed to be derived from the salmon farm.  

 

In winter when ambient plant-available nitrogen levels in the form of nitrate are high (7 

μM), the ammonium enhancements originating from the farm are relatively low. 

However, in summer, when ambient nitrate and ammonium levels are low, farm-derived 

nitrogen is likely to be the principal source for plant growth. Exposure to farm-derived 

ammonium is dependent on the distance from the cages. The larger the distance from 

the cages, the lower the ammonium concentrations and the shorter and more variable the 

exposure time. 

 

Seawater phosphate and nitrate concentrations close to the farm cages (<30 m) were 

consistently elevated suggesting a small degree of enhancement of these nutrients 

arising from the cages. Enhanced nitrate concentrations are likely to be a product of 

microbial action on ammonium. High DIN:P values near to farm cages are also 

reflective of the high nitrogen input. 

  

Currents in the vicinity of the cages have a significant effect on the distribution of 

ammonium. Currents disperse the ammonium in the direction of flow, although this 

study has shown that predictions of nutrient regimes in the vicinity of the farm, that are 

often based on current measurements at one point, can be very misleading. For example, 

the intensive sampling sessions or ‘snapshots’ revealed significant pooling of 



 61

ammonium on the western sides of the Loch Laxford and Calbha cages between the 

cages and adjacent land masses. This is brought about by protection provided by the 

cages from currents and the consequent eddying on the lee side. The water is also 

shallower on this side and may be concentrating the ammonium. 

 

At Laxford, it is likely that ammonium levels are close to ambient most of the time at 

the north eastern end of the cage group, due to the currents impacting there as a result of 

the ebb and flow of the tide in the main channel of Loch Laxford. If cultured algae were 

sited off the northern end of the cage group, it is possible they may not be exposed to 

significant concentrations of farm-derived nutrients. This factor is thus an important 

consideration when selecting a site to maximise interception of nutrients emanating 

from the cages. 

 

The ammonium concentration values for the Badcall Bay sites were high when 

compared to the Calbha sites and the seasonal ambient samples. The measurements 

were also higher than those recorded for the northern Minch (Gillibrand et al. 2003; 

Slesser and Turrell 2003) including similar loch areas on the Scottish coast (Gubbins et 

al. 2003). Badcall Bay is a relatively enclosed Bay and water movement in and out is 

likely to be limited and leading to enhanced values of ammonium. 

 

The measurements for Badcall Bay in June 2005 were particularly high. This sampling 

session was conducted in mid-summer when spring bloom organisms were senescing 

and generating ammonium (Dugdale and Goering 1967; Glibert et al. 1988). There was 

also a moderate to strong south westerly breeze noted at the time of sampling which 

may have mixed the benthic-generated ammonium through the water column within the 

bay.  
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Significant elevation of ammonium concentrations in the vicinity of the fish farms were 

detected within three hours after the initiation of daily feeding. This corresponds with 

predicted post prandial peaks in the output of wastes (mainly ammonium) from the fish 

after feeding.  Elevated levels continued for at least 4 hours indicating availability for 

extended periods of time during the day for plant uptake. 

 

The results presented in this chapter demonstrate that there are elevated levels of 

ammonium at the appropriate depths for potential utilization by marine macroalgae (i.e. 

the photic zone), for an extended period of time at distances from the fish farm cages 

that may exceed 200 m. Careful assessment of current patterns around farm cages 

should be made if the objective is to maximise exposure of cultured algae to farm-

derived nutrients. 
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CHAPTER 3 

GROWTH OF PALMARIA PALMATA IN THE 

VICINITY OF FISH FARM CAGES. 
 
Introduction 

The main aim of this chapter was to determine if seaweeds will grow in the vicinity of 

salmon cages at Loch Duart Ltd sites in north western Scotland and how this might 

affect their growth. Palmaria palmata was trialled as there is a market for this alga in 

Northern Ireland and demand cannot currently be met by supply (Browne 2001, 

Dolphin Sea Vegatables 2005). The possibility of culturing P. palmata and the potential 

for its use as a ‘nutrient sponge’ adjacent to salmon farms assumes that P. palmata will 

grow in this environment and that the nutrients will have a positive effect on the growth 

of the alga. The aims of this part of the thesis were to use tethered P. palmata to 

determine: 

• if position relative to the salmon cages had an effect on growth of the 

alga 

• the effect of depth on the growth of P. palmata adjacent to the farm 

cages. 

Cultivation of seaweeds from fragments is a method used commercially for  Eucheuma 

spp. In south east Asia (Ask and Azanza 2002) and for Gracilaria spp. in Chile 

(Buschmann et al. 2001a). Large plants are divided into small pieces, which are then 

tied individually onto horizontal nets or lines in the lower intertidal zone. After 

cultivation, the small plants are sold and the largest plants are used to provide fragments 

for the next crop. Browne (2001) tested the potential for cultivating P. palmata using 
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tethered plants in Strangford Lough in Northern Ireland. Findings from Browne’s study 

included: 

• Growth of P. palmata on site-specific culture rigs over a 4 week cultivation 

period was greater at 1-3 m depth than at 0-1m depth at two sites in Strangford 

Lough and was thought to be related to higher light intensities or lower nutrient 

levels. 

• When P. palmata was cultured on a longline in Strangford Lough for periods of 

1, 2, 3 and 4 weeks, relative growth rate (RGR) was approximately 0.1 g g-1 d-1 

for all culture periods over 6 months of the year, from April to 

September/October. This equates to nearly a doubling in wet weight in one 

week. 

• Palmaria palmata plants from a longline and a site-specific culture rig showed 

no significant difference in RGR from the surface to 7 m depth over a two week 

period. 

• Relative growth rate (RGR) of P. palmata was similar at a range of sites from a 

high energy site with high current speeds and wave action, to a low energy site 

with almost no current or wave action in Strangford Lough. 

In 2003 at Loch Laxford, Loch Duart Ltd. had fish of near harvestable size, thus the 

largest biomass and maximal nutrient input, so growth trials were carried out at that site. 

To improve the chances of determining an effect by maximising interception of 

nutrients, current meter data were consulted for location of cultured plants with respect 

to fish farm cages. As part of their environmental monitoring obligations to the Scottish 

Environmental Protection Agency (SEPA), Loch Duart Ltd. had collected two weeks of 

current meter data for the Loch Laxford site and this was used to determine the location 

for the tethered plants most likely to maximise their interception of nutrients from the 

salmon cages. The data indicated changes in current directions from minutes to weeks 
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(Figure 3.1). The tidal influence in the data appeared to be fairly strong and the overall 

current direction was south south east. The longlines with tethered algae were thus 

located on the south eastern corner of the cages to maximise the chances of nutrient 

interception. 

 

Figure 3.1 Cumulative vector plot for surface current data, Loch Laxford Eilean Ard 
‘F’ cage group, 23 February to 10 March 1999, indicating overall southerly current 
movement. Axis units are 2 km: taken from report to SEPA for Loch Laxford (exact 
location not specified), by Stirling University. 
 

Methods 

In May 2003, a trial 50-m longline (3-cm diameter polypropylene rope) was attached to 

the south east corner of salmon cages at Loch Laxford (‘F’ cage group) in alignment 

with residual current flow in order to test the methodology and establish durability of 

the design (see Figure 3.2). In June, another two longlines and a reference station were 

established from the same corner. Weighted lines or droppers (10-12 mm polypropylene 

rope) with attached plants were hung from the longlines at distances of 0, 5, 10, 25 and 

50 m from the salmon cages (Figure 3.3). 
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Two plants were attached to each dropper at 1 m intervals from 1-7 m depth. The plants 

were attached by inserting the stipe of the plant in the lay of the rope. Only a minimal 

amount of the stipe was inserted to avoid damaging the fronds.  In total there were six 

plants for each depth x distance combination. 

 

The reference station was set up approximately 500 m in a southerly direction from the 

salmon cages. This consisted of three anchored buoyed lines to which algae could be 

attached in the same manner as those on the droppers adjacent to the salmon cages. 

Each line had a mooring weight on one end and a buoy at the other. A 7-m section of 

line could be interchanged on these buoyed lines at each sampling session. A smaller 

weight (1-2 kg) was attached to the line mid-water to ensure that the line hung 

vertically. 

 

After the initial trial in May that established tethered plants would survive, 180 plants 

were attached to all the lines (i.e. 3 lines x 6 distances x 5 depths x 2 replicates) and 

were replaced monthly thereafter. 

Palmaria palmata transplants 

Plants used for transplanting were harvested at sites where P. palmata was abundant. 

Medium sized (8-12 cm in length) clean plants of simple morphology with a minimum 

of epiphytes were used. Plants of simple morphology had broader blades, up to 3 cm in 

breadth, with few branches or marginal proliferations (see www.algaebase.org for 

Palmaria palmata description). 

 

In May and June 2003, plants to be outplanted at Loch Laxford were harvested at Isle of 

Seil, 20 km south of Oban, and also from a site adjacent to SAMS Marine Laboratories 
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at Dunstaffnage. These plants were held in flow-through tanks at SAMS until taken to 

Loch Laxford for deployment. The holding time of the plants was kept to a minimum 

and was never more than 6 days. Due to the possibility that plants deteriorate whilst 

being held, plants were later sourced locally to Loch Duart Ltd. at Oldshoremore (30 

km north of the Loch Duart Ltd. Badcall base).  Plants sourced local to the salmon farm 

could be put out on site either the same day or the day after. When plants were held 

overnight they were maintained in aerated cool seawater (5-15oC). 

 

At each of the source sites, P. palmata plants were found either on the stipes of 

Laminaria hyperborea in the upper subtidal or from lower intertidal rocky reef areas. 

Plants from the intertidal reef areas appeared to differ in their life history and 

appearance from stipe-attached plants. The bulk of the intertidal rocky reef plants were 

annual, appearing in spring, growing until mid-summer and then dying back in late 

summer. In mid-late summer, they had a very ‘battered’ appearance, being more subject 

to turbulence in the surf zone and having been exposed to longer and more frequent 

alternating periods of desiccation and submersion. Subtidal plants from kelp stipes 

appeared to flourish in the spring and to grow through the summer with many surviving 

to late summer and growth being reinitiated from basal fronds in the following spring. 

There were also differences in the morphology of the plants with those collected from 

kelp having a longer stipe perhaps, making them more suitable for longline deployment. 

 

There was some concern that plants sourced from differing geographic and/or intertidal 

versus subtidal locations may give rise to unexplained variation when comparing 

between months. To address this, growth rate comparisons were made on three 

occasions, however there was no discernable difference in growth response between 
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plants regardless of their source. After July, all plants were sourced from  intertidal sites 

at Oldshoremore. 

 

Plant measurement 

Plants were photographed before and after their time in the water on the longlines. In 

order to minimise any harmful affects on the plants through being handled and being 

out of the water, plants were photographed on site at the salmon cages. Plants could be 

taken from holding buckets, attached to lines, photographed and deployed into the water 

adjacent to the salmon cages within minutes. The camera was mounted on a PVC frame 

and plants were placed on a white specimen tray adjacent to a ruler for size reference. 

Initially (May-June) a Sony Hi8 video camera was used for image capture. A frame 

grabber was used to obtain images of individual seaweeds on return to the laboratory. 

After the first two sampling sessions, an Olympus digital camera was used (Model No. 

C-5050, 5 megapixel) allowing greater resolution. This camera was kept in an 

underwater housing (Olympus) allowing increased protection for the camera from the 

weather and sea. 

 

In the laboratory, photographs were downloaded on to computer and area and length of 

the seaweeds was calculated from photographs taken before and after deployment using 

ImageJ software (public domain Java image processing program: 

http://rsb.info.nih.gov/ij/). The length of each plant was measured, as it has been shown 

that length is strongly correlated with biomass (Martinez and Rico 2002). 

 

A synopsis of the sampling regime is contained in Table 3.1. This shows a mean 

sampling time interval of 30 days and that the monitoring period covered the time of 

year when ambient nutrient levels, particularly nitrogen and phosphate may be low 
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(June to September). When ambient levels are low, any enhancement as a result of 

being in proximity to the fish cages can be expected to be at its greatest. 

 

 

Figure 3.2 Position of the longlines relative to the fish farm cages at Loch Laxford. The 
red longline is the original trial longline put in place in May 2003. 
 

 

Figure 3.3 Arrangement of droppers and longlines relative to the salmon cages. 
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Epiphyte and colour measurement 

Epiphyte cover and colour of the P. palmata plants were also noted and changes 

determined from the photographs. Epiphyte cover of the plants was recorded on a scale 

of 1-5 where 1 was equivalent to 0-10% cover, 2; 21-40%, 3; 41-60%, 4; 61-80% and 5; 

81-100%. 

 

The colour of the plants from the photographs was noted as being black, brown, green, 

green-brown, pink or red / purple. For colour analysis, plants were judged as being 

either acceptable (pink or red / purple) or not (green or black/brown). 

 

Analyses 

Growth was calculated as area-based relative growth rate (RGR) using the formula: 

 

RGR = ln (Areat1 / Areat0) / Δt 

 

Where ‘Areat0’ is the area of the plant at deployment time ‘0’, ‘Areat1’ is the area of the 

plant on recovery and Δt is the period of time (in days) that the plant was tethered in the 

sea in days (Deboer et al. 1978; Lobban and Harrison 1996). 

 

Differences in growth rate and epiphyte cover were assessed using analysis of variance, 

and Tukey pairwise comparisons of means. Two-way ANOVA were conducted across 

all the data and separately for the months of May, June and July using distance and 

depth as the variables. There were insufficient data for two-way analyses in August, 

September and November, and variation with depth and distance was analysed 

separately using one-way ANOVA. Data were examined for major deviations from 
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normality and homogeneity of variance, and transformed if required. Statistical 

packages used included Minitab, JMP IN (SAS Inst.) and Excel (Microsoft).  

 

Table 3.1 Details of Palmaria palmata transplants at Loch Laxford 2003. ‘Kelp’ (K) 
refers to kelp stipe sourced plants and ‘Intertidal’ (I) to plants from rocky reefs. 

Sample 
period 

Plants 
obtained from 

Kelp/ 
Inter 
tidal 

Date in Date out Days

May Isle of Seil K 07-May-03 03-Jun-03 27 
June Isle of Seil K 03-Jun-03 02-Jul-03 29 

Comparison: Oldshoremore K 03-Jun-03 02-Jul-03 29 
July Oldshoremore I 02-Jul-03 31-July-03 29 

Comparison: Dunstaffnage I 02-Jul-03 31-July-03 29 
August Oldshoremore I 31 July-03 27-Aug-03 27 

September Oldshoremore I 27-Aug-03 01-Oct-03 35 
November Oldshoremore I 06-Nov-03 11-Dec-03 35 

 
 
Results 

Tethered plants of Palmaria palmata 

Plant loss 

Plant loss was expressed as a percentage of the 180 plants deployed each month. The 

greatest recovery of plants (96%) was obtained for May with progressively higher 

losses for following months with a maximum of 94% in August, see Table 3.2, Figure 

3.4). 

 

Of the plants recovered, some were noted as being black, brown, or green which I have 

termed: ‘discoloured’. In May and June the greatest proportion of discoloured plants 

occurred. In May the number of discoloured plants decreased with depth and distance 

from the cages and there were no obvious patterns for June (Table 3.2, Figure 3.4). 
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Table 3.2 Plant loss and mortality for tethered Palmaria palmata (expressed as a 
percentage of 180 plants deployed). 
  

Month 
Name DISTANCE 

Original 
Number 
plants 

% 
Remaining 
of original 

% of 
Remaining 
discoloured DEPTH 

Original 
Number 
plants 

% 
Remaining 
of original 

% of 
Remaining 
discoloured 

May 0 10 100 80 1 10 100 50 

 5 10 80 38 2 10 100 30 

 10 10 100 50 3 10 90 50 

 25 10 100 10 5 10 100 40 

 50 10 100 0 6 10 90 0 

May Total  50 96 35  50 96 34 

June 0 36 75 41 1 36 72 25 

 5 36 58 14 2 36 61 28 

 10 36 83 47 2.5 36 75 44 

 25 36 81 35 3 36 67 17 

 50 36 64 39 5 36 67 23 

 Reference 36 50 50 7 36 69 19 

June Total 216 69 38  216 69 26 

July 0 36 89 0 1 36 83 0 

 5 36 86 6 2 36 89 0 

 10 36 75 0 2.5 36 75 6 

 25 36 72 0 3 36 64 3 

 50 36 61 0 5 36 50 3 

 Reference 36 47 0 7 36 75 0 

July Total  216 72 1  216 72 1 

August 0 30 10 30 1 36 3 0 

 5 30 3 0 2 36 3 0 

 10 30 3 0 3 36 11 3 

 25 30 7 0 5 36 6 0 

 50 30 0 0 7 36 6 0 

 Reference 30 10 0    0 

August Total 180 6 17  180 6 1 

September 0 30 43 0 1 36 25 0 

 5 30 20 15 2 36 42 0 

 10 30 13 0 3 36 36 3 

 25 30 27 0 5 36 19 0 

 50 30 47 0 7 36 19 0 

 Reference 30 20 0    0 

September Total 180 28 0  180 28 0 

November 0 30 43 0 1 36 61 0 

 5 30 20 0 2 36 50 0 

 10 30 50 0 3 36 39 0 

 25 30 33 0 5 36 25 0 

 50 30 63 0 7 36 33 0 

 Reference 30 40 0    0 

November Total 180 42 0 0 180 42 0 

         

Grand Total 1022 48 17  1022 48 8 
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Figure 3.4 Remaining, living, tethered Palmaria palmata plants as a percentage of 
original numbers for each month for a) distance for farm cages and b) depth. 
 

Plant growth 

Mean measured parameters for plants with percentage change for each month from May 

to September 2003 at Loch Laxford are shown in table 3.3. Growth, expressed as 

percentage change in length and area (as distinct from RGR) across all distances and 

depths showed that the highest change in both length and area occurred in May, and that 

changes in length and area decreased through to November. A similar pattern was 

observed in the growth rates (RGRs, Figure 3.5). Table 3.3 also shows that the initial 

plant lengths were similar and the time intervals between sampling sessions were 
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comparable. RGRs for individual plants demonstrated a wide variation in values 

ranging up to 0.1 cm2 cm-2 day-1 (median 0.02 cm2 cm-2 day-1) over the month long 

sampling periods. 

 

Table 3.3 Mean change in length and area of Palmaria palmata at Loch Laxford in 
2003 for months from May to September. 

MONTH 

Mean 
initial 
area 
(cm2) 

% Area 
increase 

Mean 
initial 
length 
(cm) 

% 
Length 
increase 

Growth
Interval
(Days) 

May 20.9 196.1 9.0 67.1 27 
June 17.6 95.9 8.8 31.5 29 
July 34.4 67.7 10.6 31.5 29 

August 38.4 43.1 11.1 27.9 27 
September 30.2 26.6 10.7 14.4 35 
November 27.0 31.6 10.4 16.5 35 

 

 

Figure 3.5 Variation in RGR with month, May to November 2003 for tethered 
Palmaria palmata at Loch Laxford. Values which share at least one letter are not 
significantly different at p = 0.05. 
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Two-way ANOVA of data across depth and distance for RGR showed a significant 

effect for depth: (F(5,457) = 2.75, p = 0.02) and for distance: (F(4,457) = 3.64, p = 0.006) 

but no significant interaction (Figures 3.6 and 3.7).  Growth rates of plants at 10 m and 

25 m from the farm cages were significantly higher than at the reference site, and plants 

at 2 m depth had higher growth rates than those at 1 m and 7 m depth (Figure 3.7). 

 

Analysis of the results by month (Figure 3.8) showed a trend for lower growth close to 

the cages in May. In the summer months, this trend was reversed with greater growth 

closer to the cages, except for very close (0 and 5 m). Growth decreased with increasing 

depth in most months although growth at 1 m depth was often less than at greater 

depths. Growth at 2 m depth was significantly greater than at 7m depth for July and 

November. The August results were not included due to the low return of plants for that 

month. 

 

 

Figure 3.6 Mean RGRs of tethered Palmaria palmata plants at different distances from 
the Laxford cage group (cm2 cm-2 day-1) for all combined data. Values which share at 
least one letter are not significantly different at p = 0.05. 
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Figure 3.7 Mean RGRs of tethered Palmaria palmata at different depths for all data 
combined. Values which share at least one letter are not significantly different at p = 
0.05.  
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Figure 3.8 Variation in RGR with distance and depth by month for tethered Palmaria 
palmata. Values which share at least one letter are not significantly different at p = 
0.05. ANOVA details are presented in Table 3.4. Graphs without letters have no 
significant differences between measurements. 
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Table 3.4 ANOVA results for RGR comparisons for depth and distance for month for 
Palmaria palmata tethered algae measurements as depicted  in Figure 3.8. 

Month Distance   Depth   
 F df F p F df F p 
May F(4,23) 1.18 ns F(4,23) 0.38 ns 
June F(5,118) 2.58 0.03 F(4,118) 1.26 ns 
July F(5,125) 3.95 0.002 F(4,125) 4.49 0.002 
September F(5,45) 2.11 ns F(4,46) 2.35 ns 
November F(5,69) 0.3 ns F(4,70) 3.16 0.019 

 

Epiphytes 

Epiphyte growth on the tethered plants was greatest in June, and virtually absent in 

November (Figure 3.9). Epiphyte growth was most noticeable at distances of 5-10 m 

from the cages with the least epiphyte growth at the reference site (500 m distant; 

Figure 3.10). Across all months, there was significantly higher epiphyte growth at 2 m 

than at either 1 or 7 m depth (Figure 3.11). 

 

Epiphytes to the plants were mainly filamentous brown algae, probably ectocarpoids or 

chain diatoms. There were many unattached epiphytes caught up with the tethered P. 

palmata, especially close to the salmon cages. The unattached algae included 

filamentous brown algae and diatom chains, but often included Enteromorpha spp (now 

Ulva spp. see Hayden et. al. 2003) spp. and Ulva spp. Often the epiphytes appeared to 

have detritus trapped amongst them which may have included salmon feed and faecal 

particles.  
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Figure 3.9 Variation in epiphyte cover between May and November 2003. Values that 
share at least one letter are not significantly different at p = 0.05. ANOVA F(5, 481) = 
86.9, p < 0.0001 
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Figure 3.10 Epiphyte cover across all months at different distances from the cage 
groups. Values which share at least one letter are not significantly different at p = 0.05. 
ANOVA F(5, 457) = 2.88 , p = .014  
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Figure 3.11 Epiphyte cover across all months at different depths from the cage groups. 
Values which share at least one letter are not significantly different at p = 0.05. 
ANOVA F(5, 457) = 5.53, p < .0001 

 

Variation in epiphyte rating with depth and distance from the farm cages for each of the 
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months is depicted in Figure 3.12 and ANOVA results are summarized in Table 3.5. 

The monthly change in the amount of epiphyte cover over distance (from the cages) 

closely followed tethered P. palmata growth rate changes, except in May. In May, there 

was a greater incidence of epiphytes closer to the farm, decreasing steadily with 

distance to 50 m. For June, there was a high incidence of epiphytes at all distances, 

decreasing slightly with distance from the cages to 25 m. From July to September, there 

were peaks between 5 and 50 m. In November, epiphyte rating was very low across all 

distances. 

 

In May, there was a moderate cover of epiphytes at all depths and a high coverage at all 

depths in June. In July and September, there was a decrease in cover with increasing 

depth from 2 to 7m. 
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Figure 3.12 Epiphyte rating variation for distance and depth. Values which share at 
least one letter are not significantly different at p = 0.05. No letters indicates no 
significant differences. 
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Table 3.5 ANOVA results for epiphyte cover comparisons for depth and distance for 
each month for tethered Palmaria palmata (as depicted in Figure 3.12); F ratio, degrees 
of freedom and significance level. 

Month Distance   Depth   
 F df F p F df F p 
May F(4,43) 11.27 <0.0001 F(4,43) 0.59 ns 
June F(5,142) 1.02 ns F(4,143) 1.68 ns 
July F(5,149) 7.67 <0.0001 F(4,150) 3.96 0.004 
September F(5,45) 3.69 0.007 F(4,46) 6.76 <.0001 
November       

 

 Colour 

Plant colour was deemed as acceptable when it was pink or red / purple. The lowest 

percentage of plants of acceptable colour was in June, colour acceptability then 

increased until November (Figure 3.13). 

 

Overall, there are more plants of acceptable colour closer to the farm than at distance 

and colour improved with depth. (Figures 3.14 a-d). 
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Figure 3.13 Percentage of Palmaria palmata of acceptable colour for each month. Total 
plant numbers for each month: May, 48; June, 148; July, 155; August, 10; September, 
51; November, 75. 
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Figure 3.14 a) Occurrence of plants of acceptable colour in relation to distance from 
salmon cages. Plant numbers across all months: 0 m: 71, 5 m: 52, 10 m: 57, 25 m: 56, 
50 m: 65, Reference: 86. 

 

 

Figure 3.14 b) Occurrence of plants of acceptable colour in relation to depth. Plant 
numbers across all months: 1 m: 98, 2 m: 150, 3 m: 87, 5 m: 70, 7 m: 82. 
. 

Discussion 

Plant losses and discoloured plants 

The smallest proportion of tethered plants were lost in May when growth was highest. 

The number of highly discoloured plants, as a proportion of remaining plants, peaked in 

May and June. Over these two months bleaching of P. palmata can occur (see also 

Chapters 5 and 6). This is believed to result from UV damage and/or nutrient depletion 

and coincides with extended periods of clear skies, bright sunshine and low water 

movement. A greater proportion of acceptably coloured plants was found in deeper 

waters for May. UV damage and nutrient depletion are less likely to impact at depth. 
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Plotting colour index against nitrogen content of P. palmata plants harvested in 2005 

(Chapter 5) showed a good correlation (see Figure 3.15) supporting the theory that 

pigments (including phycoerythrin) could be a storage product of P. palmata for 

nitrogen (Morgan and Simpson 1981b; Morgan and Simpson 1981c; Martinez and Rico 

2002). Low nitrogen leads to pigment breakdown. Phycoerythrin is likely to be one of a 

number of catalytic and storage proteins e.g. Rubisco that will also be reduced in 

nitrogen limiting conditions (Raven pers. com.). 

 

However, two different kinds of photoinhibition have been defined, dynamic and 

chronic photoinhibition (Osmund 1994). In general, sun-adapted algae exhibit dynamic 

photoinhibition, i.e., a reversible photoprotective mechanism consisting in a down-

regulation of the photosystem II (PSII) in order to handle excess energy increasing 

thermal energy dissipation. In contrast, when shade-adapted algae are transferred to 

high irradiance environment, e.g. shallow water, chronic photoinhibition becomes 

evident. This phenomenon is characterized by photodamage of PSII reaction centres and 

subsequent proteolysis (Critchley and Russell 1994). Thus, expression of photodamage 

occurs when the rate of degradation of D1 proteins exceeds the rate of repair (Aro et al. 

1993; Figueroa and Gomez 2001). 

 

For Palmaria palmata, Sagert and Schubert (1995; 2000) found decreasing amounts of 

phycoerythrin with increasing irradiance in P. palmata and Martinez and Rico 

(Martinez and Rico 2002) have postulated that phycoerythrin act as a storage product 

for nitrogen in P. palmata. Thus in May there thus was either increased degradation of 

proteins as a result of UV damage or nitrogen depletion with decreasing depth. In June, 

there was no consistent pattern to colour with depth over the range investigated, 

probably relating to low nitrogen availability throughout the water column. 
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Figure 3.15 Percentage nitrogen (dry weight) for colour-rated Palmaria palmata plants 
harvested from frames as detailed in chapter 6. 

 

Tethered plants of Palmaria palmata – growth rates 

Maximal mean growth rates for individual plants for the trial months ranged up to 0.1 

cm2cm-2day-1. These rates compare well with those recorded by Browne (2001) for field 

grown plants and as part of this project in tank culture (Chapter 6) of more than 0.1 g g-

1day-1 and an SGR by Morgan and Simpson (1981) for P. palmata of 7.8% although the 

growth measurements were based on weight rather than area. RGRs using length, area 

and weight are unlikely to be directly comparable due to non-linear relationships 

between these three parameters. In fact, a linear determined RGR is likely to be less 

than area and area less than weight. 

 

In May when growth rates were highest, the mean rate for all P. palmaria plants was 

0.03 cm2 cm-2day-1. In May, ambient nutrients were more readily available (see chapter 

2) compared to later summer months and incident daily light was increasing. Overall 

growth rates closer to 0.1 cm2cm-2day-1 may have been achieved if plants had been 

deployed for March – April when nutrients are high and light levels are believed to be 

sufficient for P. palmata growth but too low for other species, in particular for 
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competing epiphytes. Palmaria palmata grows well on low incident light levels of less 

than 100 µmol photons m-2 s-1consistent with the alga’s habitat attached to the stipes of 

Laminaria hypeborea (see chapter 5). 

 

In May, when ambient concentrations of nutrients were higher than in succeeding 

months (Chapter 2), growth was highest further away from the farm and epiphytes were 

most abundant in the vicinity of the cages. Epiphytes appeared to make better use of 

excess nutrients in this month and may have inhibited the growth of P. palmata close to 

the cages. However, particulate matter in the water column such as fish feed detritus and 

fish faeces that lands on the algal surface may also be limiting plant growth. During this 

period, plants that were brought to the surface close to the farm, to 15 m from the cages, 

often had a coating of brownish slime. In later summer months when ambient nutrients 

were low, better growth occurred closer to the farm, suggesting utilization of farm-

derived nutrients despite the slime. The extra light available in summer may enhance 

growth through any covering layers. It is also possible that the plants may be sourcing 

nutrients from the slime as has been recorded for Sargassum spp. sourcing nutrients 

from particulate matter on the Great Barrier Reef by Schaffelke (1999). 

 

Epiphytic algae consist primarily of filamentous algae which often are able to utilise 

nutrients very quickly due to their high surface to volume ratio (Wallentinus 1984; 

Lobban and Harrison 1996; Pedersen and Borum 1996; Karez et al. 2004). Close to the 

cages, where there is greater nutrient availability, the filamentous algae and Ulva spp 

(and Enteromorpha spp.) responded quickly to the increasing availability of light with 

increased daylength in early spring.  At greater distances from the farm cages, 

intermittent exposure to nutrients may suit P. palmata better than the epiphytic algae 
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due to its capacity for N storage (Lapointe 1985; Pickering et al. 1993; Martinez and 

Rico 2002). 

 

Optimal growth for the tethered P. palmata was found between 10 and 25 m from the 

cages. Care was taken when laying the longlines that their orientation would not result 

in a decrease in available light as a result of shading from the cages. As they were on 

the south eastern side of the cage group, light interception was maximised. The decrease 

in growth of P. palmata close (< 10 m) to the cages was not due to shading by the 

cages. When lines were brought to the surface from close to the cages, not only was 

there a brown slime, but there were also masses of unattached algae tangled around the 

droppers. These species included Enteromorpha (Ulva) spp. and filamentous brown 

algae, possibly ectocarpoid species and long-chain diatoms. While in the water, under 

conditions of neutral buoyancy, these algae were caught up on the lines and when 

bought to the surface, they came away from the lines, sometimes taking some of the 

tethered seaweeds with them. This solid mass of epiphytes would have shaded the 

tethered plants and contributed to lower growth very close to the cages (< 10 m 

distance) and higher losses of plants. The unattached epiphytes were not recorded in the 

epiphyte ratings of the P. palmata as they were not attached and their presence would 

have contributed to the lower epiphyte ratings recorded close (< 10 m) to the cages for 

July to September. In addition to shading, the loosely entangled epiphytes may have 

reduced water exchange and nutrient supply to the P. palmata and other attached 

epiphytes. 

 

Browne (2001) found high RGRs for growth of P. palmata from April to 

September/October in Strangford Lough. Results of the present study in north west 

Scotland, supported by the plants from the reference site, seem to indicate a high growth 
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rate for May followed by decreasing rates for subsequent months. This could be 

explained by nutrient level differences between Strangford Lough and Loch Laxford.  

Browne (2001) admits that the Lough is a repository for effluents from the surrounding 

populace and this may result in higher concentrations of nutrients. On the sustainable 

Mariculture in northern Irish Lough Ecosystems website (SMILE; 

www.ecowin.org/smile/strangfordlough), they claim a mean nutrient concentration for 

Strangford Lough for ammonium of 2.8 μM, for nitrate of 13.5 μM and phosphorus of  

2 μM which seem high relative to ambient levels in the vicinity of the Loch Duart fish 

farm sites. They also claim that the Irish Sea is the largest source of nitrogen and silicate 

loading to Strangford Lough. Of the anthropogenic sources a greater proportion of its 

nitrogen loading from catchment-derived activities (primarily agriculture), than from 

sewage or industry. 

 

Another influencing factor may be water motion. Strangford Lough is subject to tidally 

generated currents. While the Loch Laxford plants are also in a loch with a large tidal 

range, the farm cages are situated in the lee of an island potentially limiting flow around 

the cages and plants. Water currents would serve to minimise epiphytes on plant 

surfaces through abrading the surfaces as a result of the movement of the plants and 

enhance nutrient exchange through decreasing the diffusion boundary layer (Lobban 

and Harrison 1996; Hurd 2000; Harrison and Hurd 2001). 

 

In this study, growth rates of tethered P. palmata were greatest at 2 m depth. This 

agrees with the findings of Browne (2001) who found lower growth rates for algae on 

site specific rigs in depths of 0-1 m than at 1-3 m at two sites in Strangford Lough. 

Browne believed that the slower growth in the shallower waters may have been due to 

high light or nutrient deprivation. At Loch Laxford, these two factors may also be 
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influencing growth of P. palmata in shallower waters. Temperature and salinity profiles 

(Calbha and Badcall bays only, Appendix 1, Figures 1.20 & 1.21) show some 

stratification of the water column indicating varying water chemistry in shallower 

waters (2-10 m) which may account for lower growth rates. 

 

Unlike Browne (2001) who found no difference in RGR between 0 and 7 m depth for 

tethered plants grown on a longline and a site specific rig, overall growth here was 

found to be less at 7 m than at 2 m depth across all sites and was probably caused by 

lower light at this depth. 

 

The occurrence of epiphytes on the plants follows closely the seasonal availability of 

light. In November, when the days are quite short, there were few or no epiphytes on the 

seaweeds. In May when the days were lengthening, the epiphytes became more 

abundant especially close to the cages (higher nutrients). In September when the days 

were shortening, there were again maximal amounts closer to the cages (higher 

nutrients). In the summer months, attached epiphytes were common everywhere except 

very close to the cages. However, as mentioned earlier, the quality of unattached algae 

and particulate matter found on the lines very close to the cages may have prevented 

development of an epiphytic community as found at greater distances. 

 

The P. palmata on the lines for these experiments were at low densities, meaning they 

were potentially a greater risk of colonisation by epiphytes. Higher densities of plants 

can result in self-cleaning through rubbing of adjacent plants and they also minimise 

establishment of other algae through dominating space on the lines similer to the 

situation in tanks (Fletcher 1995, Ask and Azanza 2002). Culturing, as opposed to 

tethering, of the algae on the lines should result in a lower occurrence of epiphytes due 
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to higher densities of plants. This would result in cleaner more acceptable plants with 

lower mortalities and increased yield. The problem of epiphytes is common to cultured 

seaweed operations and strategies would have to be developed to minimise their impact. 

 

Colour 

Seasonal patterns in colour of the plants followed growth rates. Generally the plants 

closer to the farm had better colour than those further away. This is likely to be a 

reflection of availability of nutrients. The colour of P. palmata plants has been related 

to nitrogen content of the plant and thus to nitrogen availability (Figure 3.15). The 

better colour close to the cages however also may have been enhanced as a result of the 

shading by the unattached epiphytic seaweeds. In November, colour was good at all 

sites, in agreement with high ambient nutrient concentrations and low light. The 

observed trend of darker plants with depth may be as a result of some photodegradation 

from high light levels in the shallower waters but also may be related to some 

stratification of the water column with lower nutrient levels in shallower waters. 

 

The results from the use of transplants for determining the potential for culture of  P. 

palmata are not all directly translatable. Transplanting the seaweeds is likely to have 

stressed them and led to greater levels of mortality than would have been the situation 

for cultured plants deployed on site. Plants taken from intertidal locations also may have 

suffered growth changes as a result of a change in habitat. Plants from the intertidal 

zone may also have microscopic stages of epiphytic algae attached that only bloom once 

in their new environment and are, thus, not reflective of plants that might be cultured on 

site (e.g. Ask and Azanza 2002). The assumption is that all the plants are equally 

affected within a month and trends observed within the month are representative. It 

should also be noted that the findings determined here at Loch Laxford apply in the 
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direction of the determined main currents which are believed to enhance nutrient 

availability and may not apply in all directions around the cages. 

 

SUMMARY 

Growth of P. palmata was significantly higher at 10-25 m from the fish farm cages than 

immediately adjacent or at greater distances, particularly during the summer.  

 

The best growth during summer, when it might be assumed the fish farm cages are the 

primary source of nutrients, was not as high as during periods of high light availability 

and high ambient nutrient availability in spring. 

 

In comparison to the reference station, higher growth and better colour of plants was 

found in the vicinity of fish farm cages (<10 m) extending to at least 50 m distance. 

Very close to the cages (<10 m) growth appears to be inhibited by unattached epiphytes 

and/or farm-derived water-borne matter likely to consist of fish feed and fish faeces. 

 

Growth was best at 2 m depth and significantly greater than at either 1 or 7 m depth.  

 

A large percentage of the plants suffer discoloration in May and June perhaps as a result 

of UV damage or nutrient deprivation. If plants are to be grown close to the cages, 

strategies to mitigate this might include putting the plants deeper at times when there 

are conditions of high light and low water movement. This may also assist in 

minimising epiphytes as epiphytes appear to do well under conditions of high light in 

the shallower waters. 
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CHAPTER 4 

CULTURE OF PALMARIA PALMATA AND 

LAMINARIA SACCHARINA IN THE VICINITY OF 

THE FISH FARM CAGES 
 
Introduction 

Macroalgal culture in coastal waters has been targeted as a means of utilising excess 

nutrients that may otherwise contribute to eutrophic conditions. Their potential utility 

has been documented not only for tank and sea-based fish cultivation systems (e.g. 

Evans and Langdon 2000; e.g. Chopin et al. 2001; Fei 2004; Neori et al. 2004; Zhou et 

al. 2006) but for sewage and industrial waste water as well (Anderson et al. 1999; 

Aravindhan et al. 2004; Torres et al. 2004; Mehta and Gaur 2005). 

 

Successful cultivation of macroalgal species adjacent to salmon cages has been 

documented and there is further ongoing research. Troell et al. (1997) found Gracilaria 

chilensis had a 40% higher growth rate when cultivated at a distance of 10 m from 

salmon sea-cages in Chile, and Petrell and Alie (1996) demonstrated how 1.5 μM 

ammonia concentrations found adjacent to salmon sea-cages enhanced the growth of 

brown macroalgae. In Canada, culture of Porphyra spp. is being trialled adjacent to 

salmon cages (Chopin et al. 2000; Carmona et al. 2006) and in China, Gracilaria 

lemaneiformis (Bory) Dawson is being co-cultured with the fish Sebastodes fuscescens 

(Zhou et al. 2006). In this project, Palmaria palmata and Laminaria saccharina were 

chosen for culture trials adjacent to fish farm cages in north west Scotland. 

Culture of P. palmata has received much attention in recent times throughout Europe 

because of its perceived high value for use either as a food or as a fodder to animals 
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such as abalone and sea urchins. It is also a hardy alga with high growth rates, qualities 

that make it attractive as an aquaculture species. Laminaria saccharina was chosen as it 

is a large, fast-growing alga and thus has good bioremediation potential. The alga also 

has potential although unproven, commercial value. Laminaria saccharina is edible and 

is very similar to L. japonica or Kombu which constitutes the largest aquaculture crop, 

by weight, in the world. Laminaria saccharina is also currently being tested as a 

potential source of novel polysaccharides with biomedical applications (Cumashi et al. 

unpubl.) as an adjunct to this project. The alga is also a potential source of alginates . 

 

The methodology for the mass culture of brown algae from spores is well developed 

and has been conducted since 1955 for the brown algae Wakame (Undaria pinnatifida) 

and 1970 for Kombu (Laminaria japonica) in Japan (Ohno and Largo 2006). 

Commercial cultivation of red algae has been restricted mostly to Nori (Porphyra spp) 

but recently cultivation from isolated spores has been successfully developed for the 

carrageenophytes Kappaphycus alvarezii (de Paula et al. 1999), Sarcothalia crispata 

(Avila et al. 1999), Gigartina skottsbergii (Buschmann et al. 2001b), and agarophytes 

such as Gracilaria verrucosa (Oza et al. 1994), G. chilensis (Alveal et al. 1997; Halling 

et al. 2005), G. parvispora (Glenn et al. 1998), Gelidium rex (Rojas et al. 1996), and 

Gracilariopsis bailinae (Rabanal and Azanza 1999). 

 

Current development of P. palmata mass culture technology involves scaling up algal 

production techniques from the laboratory as well as further refining optimal conditions 

for spore release and culture. Mass culture of L. saccharina is well progressed and this 

project involved adapting existing techniques to the field situation at Loch Duart Ltd. 

sites. 
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The culturing methods for P. palmata used here were developed from the work of 

Browne (2001), Le Gall (2004) and Pang and Lüning  (2004; 2006). The culture 

methods used for Laminaria saccharina were modified from those of Dawes (1987), 

Holt  (1984) and as outlined in Kawashima (1993). 

Palmaria palmata 

Palmaria palmata has an unusual life history. Van der Meer and Todd (1980) were the 

first to complete the life cycle in culture. The foliose plants observed on the shore are 

either male gametophytes or tetrasporophytes which are isomorphic. Female and male 

gametophytes are very dissimilar in appearance, the female being a microscopic crust-

like plant which produce carpogonia borne directly by the vegetative cells. The male 

gametophyte produces spermatia that can fertilise the carpogonia of the female crusts. 

Once fertilised, the carpogonium develops into a tetrasporophyte. Initially, the diploid 

tetrasporophyte grows attached to the female, but it eventually overgrows it. Adult 

tetrasporophytes produce haploid tetraspores by meiosis and these develop into male or 

female gametophytes. Sexual maturity is reached when male plants are 9-12 months old 

and more than 20 cm long and when female plants are only a few days old and 

microscopic. Therefore, it is believed that females are fertilised by males from a 

previous generation. 

 

Browne (2001) refined the culture of P. palmata in attempting to scale up culture. Her 

methodology for culturing P. palmata included surface cleaning of mature tetrasporic 

plants, then introducing them to tanks containing sterilized seawater at the rate of 100 g 

wet weight per 0.05 m2 of tank surface area. Her recommended substrate for growing 

spores was Kuralon string, which is the same string used for the culture of Undaria 

pinnatifida in Korea. The string was placed under the free floating P. palmata fronds on 

suitable frames. To initiate spore release, the tanks with free floating algae were 
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exposed to bright light and then placed into darkness. Spore release occurred over a 

period of 48 hours. The best results for spore growth were obtained at a temperature of 

10oC, irradiance of 10 µmol photons m-2 s-1 and a long day light: dark (16:8 h) cycle. 

Aeration was provided to the cultures during and after spore release. 

 

The method employed by Le Gall et al. (2004) for spore release shocks plants through 

desiccation followed by immersion. Generally, 3 kg of fresh algae was required to 

inoculate 1 m2 of substrate, but the liberated spore yield was extremely variable and 

depended on the fertility of fronds. Plants were first cleaned and then put in the dark at 

4oC overnight before placing into aerated 10oC 1-μm filtered seawater for one hour 

during which time the spores were released. The spores were counted in suspension and 

introduced to larger tanks where they were settled on to the substrate medium. 

Fluorescent lights suspended 0.5 m above the water surface, maintained light levels of 

50 µmol photons m-2 s-1 with a photoperiod of 12 hr. Bubbling was initiated 2 days after 

spore settlement. Spores were settled on roughened white polystyrene plates. Best 

growth was obtained with added nutrients and water exchange once per week. 

 

A similar methodology to Le Gall et al. (2004) was used by Pang and Lüning  (2004; 

2006)  for culturing P. palmata but without radical shock treatments to initiate spore 

release. A biomass of 0.5-1 kg fresh weight of tank-grown short day tetrasporangial 

thalli was cleaned three times with seawater and then put into seawater in a 10-litre 

plastic container with mild aeration over a period of three days. Thalli were picked out 

every morning, released tetraspores were allowed to sink down to the bottom for 1 hour, 

supernatant water was removed and new seawater was added to wash the spores. This 

procedure was repeated 3 times. Clean spores were collected and cultured for one month 

in 10% Provosali’s Enrichment Solution (PES) at 10°C in fluorescent white light (10 
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µmol photons m-2 s-1, 12 hr light per day). The culture medium was renewed every 

week. At 1-2 mm size the sporelings were transferred into a 5-litre glass bottle and 

cultured for a further month in full PES at elevated irradiance (40-60 µmol photons m-2 

s-1), again with weekly renewal of the medium. The young sporelings were 

subsequently transferred into an indoor 100-litre tank and later into a 2000-litre 

greenhouse tank, both supplied with flowing seawater and no further addition of 

nutrients. No substrate was used for settlement, rather the thalli were allowed to develop 

in the free floating state. 

 

Advantages of the Le Gall et al. (2004) and Pang and Lüning  (2004; 2006) methods 

include the potential for controlling spore numbers and the cleaning of the spores as the 

mucilage attached to the spores on release has been identified as a potential problem for 

spore survival (Kadel, pers com). Both methods also result in an even distribution of 

spore on the substrate surface. All the above methods for culturing P. palmata have 

been trialled during the term of this project. 

Laminaria saccharina 

L. saccharina is most common on rocky reefs but may also be found growing on rock 

and shell fragments on sand. The alga is found throughout the north Atlantic from the 

coast of New York in the west to France in the east, and north to Greenland and 

Norway. The alga has a life cycle typical of other Laminariales, consisting of an 

alternation between the large macrophytic sporophyte and a microscopic gametophyte. 

The diploid sporophytic stage is the plant we are most familiar with. It grows to 3-5 m 

in length and is found primarily in sheltered waters on hard substrates. The sporophyte 

releases motile haploid spores from sori on the plant’s surface. The germinating spores 

give rise to filamentous gametophytes (www.algaebase.org). In the laboratory, this 

stage can produce motile male antherozoa within 2-3 weeks. These then fertilize the 
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female oogonia to produce the sporophyte. 

 

In the growth season of 2004 (winter-spring), culture of Laminaria saccharina and 

Palmaria palmata were trialled adjacent to fish farm cages at Calbha. In 2004, fish 

biomass was at a maximum for the Calbha site (see Chapter 1). The algae were 

outplanted at varying times during the season and at varying distances from the fish 

cages adjacent to cage group ‘D’. Epiphytes were monitored because they have been 

identified as a potential problem for cultured seaweeds, particularly those grown 

adjacent to fish farm cages. 

 

Methods 

Palmaria palmata 

Seasonality of spore release 

To determine the seasonality of tetraspore production by Palmaria palmata in the 

vicinity of SAMS marine laboratories at Dunstaffnage, thirty P. palmata plants were 

collected regularly each from three sites on a rocky coast near Easdale on the Isle of 

Seil, 30 km south of Dunstaffnage. The sites were in close proximity (within 50 m) and 

differed in perceived environmental conditions in order to determine possible small 

scale geographic variations in seasonality of tetraspore production. The sites were 

around a small bay at the northern end of the township. Plants were collected from the 

east (EAST) and west (WEST) sides of a promontory and in the bay subtidally (BAY). 
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On the more wave-exposed eastern side within the bay, plants were sampled from the 

lower intertidal on reef (EAST) and from the upper subtidal on Laminaria hyperborea 

holdfasts (BAY). Plants were sampled from the western side in the lower intertidal and 

upper subtidal from the rocky reef and attached to Fucus serratus. Tetrasporic plants 

were identifiable by the marbled appearance of the surface of the fronds and the 

presence of tetraspores were confirmed using a binocular microscope. The plants were 

scored for the presence or absence of tetraspores. The wave-exposed side was not 

always sampled due to wave action. 

 

The majority of plants for culture were sourced from Isle of Seil but additional sites 

included the Falls of Lora 5 km north of Dunstaffnage, in front of the SAMS marine 

laboratories, and at Calbha, one of the Loch Duart sites in north west Scotland. 

 

Substrate 

Spores for each method were settled on to Kuralon string.  A significant advance in this 

project was the development of a frame that maximised the length of string that could 

be evenly seeded with P. palmata spores. The efficient output of amounts of seeded 

string necessary for large scale culture is a potential constraint for commercialisation of 

P. palmata culture. At harvest, one to two kilograms fresh weight of P. palmata is 

obtained for each metre of seeded string (Browne 2001) or, for a crop of ten tonnes, 10 

kilometres of seeded string is required. Palmaria palmata spores are not motile so 

settlement is restricted to upward facing surfaces. Current culture techniques seed 

lengths of string of tens of metres rather than thousands of metres. 
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In this project, frames were developed that exposed maximal string surfaces to spore 

settlement. This was done using two innovative frame designs. The first used string 

wound around closely spaced pegs at two ends of culture tanks and the second was 

wound around an open frame with the lower strings bought to the same level as the 

upper strings (see Figure 4.1). Future large scale seeding should consider Japanese and 

Korean technology for seeding Porphyra spp which includes using nets for seeding. 

 

In the settlement tanks, microscope slides were placed at the bottom to monitor spore 

numbers and survival. 

 

 
 

 
 
Figure 4.1 Two frames types were used for seeding string. 

Above: string is looped on to ‘teeth’ at each end of the tank and Below: string is looped 
around a frame with an insert keeping lower strings on a level with top strings. 
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Spore release 

In culture trials in 2004 and 2005, three different methods of spore release were 

successfully trialled. The methods were those of Browne (2001) which I have termed 

the ‘free’ method, Le Gall et al. (2004) termed the ‘shock’ method and Pang and Lüning 

(2004; 2006), called the ‘tumble’ method. 

 

Free Method 

P. palmata fronds were collected, washed with UV- treated seawater and approximately 

100 g of the washed plant material was added to tanks of 0.05 m2 basal area. The plant 

fragments in the culture medium were exposed to 2-6 hours of high light and then left 

for up to 48 hours with light aeration on low light of 10-20 µmol photons m-2 s-1 at 16:8 

hours light:dark. 

 

Shock Method 

Outer surfaces of tetrasporic plants were wiped to detach loosely attached epiphytes and 

excess moisture. They were then wrapped in paper towelling, placed in the dark at 4oC 

and left overnight before being introduced to the culture medium. They were left here 

with aeration for one hour before the seawater containing the spores was filtered 

through a 43-μm filter into separate tanks containing substrate. 

 

Tumble 

A biomass of up to 500 g fresh weight consisting of tetrasporangia-bearing thalli was 

rinsed in 1 μm-filtered seawater and then air tumbled in 10-litre plastic containers filled 

with 8 l of filtered seawater. All thalli were picked out every morning and used 

repeatedly for tetraspore release during the following three days. After the thalli had 

been taken out, the released tetraspores were allowed to sink down to the bottom for 1 
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hour, excess water was removed and new seawater was added and spores washed 

through a 43 μm filter into separate tanks containing substrate. 

 

Growth conditions 

For the first 3-7 days, the P. palmata spores were grown at 10-12oC, long day (16:8) 

with low light of 10-20 µmol photons m-2 s-1 after which the seawater was exchanged 

for seawater containing f/10 (Guillard and Ryther 1962) nutrients and GeO2 to limit 

diatom contaminats (Markham and Hagmeier 1982). At this stage microscope slides at 

the base of the tanks are sacrificed to do spore counts. The number of spores were 

counted on transects of the slides and values extrapolated for the tank area. The 

percentage of living (red healthy colour) were noted against dead (clear to green patchy 

colour). The seawater medium was changed every 7 days and after two to four weeks 

the light levels were raised to 50-100 μmol photons m-2sec-1. 

 

Laminaria saccharina culture 

Laminaria saccharina  plants used for culture were collected at Isle of Seil and at Loch 

Creran approximately 20 km north of Oban. Fertile L. saccharina fronds were usually 

older, longer, thicker blades and the sori were identified by raised areas that sometimes 

appeared darker than the rest of the frond. Sori can occupy areas from a few square 

centimetres to much of the frond surface with a tendency to be located near the central 

part of the frond. At least five fronds with sori were selected to maintain a minimum 

level of genetic diversity. Sections of frond with sori were cut from the blade, the outer 

surfaces were wiped with a cloth or paper towel to remove loosely attached epiphytes, 

and the fronds were placed in the darkness at 4oC overnight before placing into 

sterilized seawater for two hours. The spores that had been released into suspension 

were introduced to tanks containing the substrate medium. 
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Laminaria saccharina was grown under similar conditions to P. palmata except that it 

could tolerate - and was grown under - higher light conditions (100+ µmol photons m-2 

s-1). Spores were released on to the same substrate as that used for the P. palmata: 

Kuralon string. Seawater medium was changed every 7-10 days. Sporophytic plants 

were obvious on the string within four weeks and counts of the plants indicated more 

than 30 per centimetre of string. 

 

Nutrients (f/10) were introduced to spore cultures of both species when the seawater 

was changed with apparent positive effects. If, however, the number of epiphytes also 

increased, compromising spore survival, both P. palmata and L. saccharina appeared to 

survive well without nutrient additions. Not using nutrients appeared to be a good 

means of managing epiphyte contaminants. 

 

Cultured algae were outplanted on site at Calbha on three occasions. The first outplant 

to the Calbha site occurred on 19/2/04 and consisted of a mixture of two L. saccharina 

batches (initiated 23/12/03 and 9/1/04) and the first of the P. palmata batches (‘Feb’,  

initiated 9/1/04). 

 

The second outplants were deployed on 16/3/04 and consisted of a P. palmata batch 

produced by colleagues at Queens University Belfast marine station at Portaferry (‘Mar 

No 1’, initiated 20/1/04 & 12/2/04) and a second P. palmata  batch from SAMS (‘Mar 

No 2’, initiated 3/2/04). The third outplant (‘May‘, 11/5/04) consisted of an L. 

saccharina batch (initiated 1/4/04) and the final batch of P. palmata (initiated 3/3/04, 

see Table 4.1 for synopsis). 
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Table 4.1 Dates for culture initiation and time before deployment to sea for algae 
outplanted to Calbha. 

Stock 
Source Culture initiated Date of Outplant 

Days after 
initiation 

 
Palmaria 
palmata 

Laminaria 
saccharina   

Seil  23/12/2003 19/02/04 58 
Seil 09/01/04  19/02/04 41 (Feb) 
Creran  09/01/04 19/02/04 41 
Seil 03/02/04  16/03/04 42 (Mar No 2) 
N. Ireland 20/01/04  16/03/04 56 (Mar No 1) 
 12/02/04  16/03/04 33 (Mar No 1) 
Seil 03/03/04  11/05/04 69 (May) 
Creran  01/04/04 11/05/04 40 

 

Frames 

For deployment on site, P. palmata seeded string was cut into metre lengths. Loops 

were tied in each end of the strings to give a length of 80 cm and attached to clips on 

buoyed frames (see Figure 4.2). The buoyed frames consisted of two 1.5 m length PVC 

pipes, each with four clips, attached to a 12 mm mooring rope. The 12 mm mooring 

rope was attached to a buoy at the surface and at approximately half depth or at least 6 

m depth above the bottom at low tide; a 2-3 kg weight was attached that kept the upper 

section of the line vertical. Each line was moored at the base with a 20–30 kg weight. 

The top of the frames were 2.0 m from the surface. The mooring lines were set up so 

that the frames could be bought into a small boat at low tide for maintenance and 

monitoring of the seeded strings. Using frames provided multiple strings for each site, 

thus increasing replication. Four P. palmata seeded strings were supported by each of 

the frames. 
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Figure 4.2 Buoyed frames used for outplant of cultured Palmaria palmata and 
Laminaria saccharina at Loch Duart. 
 

Frame Placement 

The aim was to determine how placement relative to the salmon cages would affect 

growth and quality of the cultured seaweeds. The original plan was to have frames in 

triplicate at various locations with respect to the salmon cage group. However to 

accommodate farm operations and loss of some of the frames, frames were grouped 

depending on their distance from the farm cages (see Figure 4.3). Frames located close 

to the salmon farm cages (to 50 m) were attached to two horizontal surface lines which 

ran east from the eastern corners of the cage group. Frames were attached to these lines 

with a 1-2 kg weight at their base. 

Polypropolene 
pipes 

Mooring 

11’ Bouy

Palmaria 
seeded 
strings 

Mid water 
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Weighted 
Laminaria 

ropes 
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The final arrangement was 10 frames between 0 and 50 m on the east side of the salmon 

cage group (‘Close’), 6 buoyed frames between 70 & 80 m on the west side (‘Mid1’), 4 

buoyed frames at 120 to 220 m (‘Mid2’) and 5 at  500+m (‘Far’, see Figure 4.2) for 

giving a total of 25 frames. Note that while the eastern group of ‘Far’ frames are over 

900 m from the western cage group, they are only 500 m from another set of salmon 

farm cages on the eastern side of the lease site that had a similar biomass of fish at the 

time. These frames are thus grouped with the second southern ‘Far’ group of frames. 

 

L. saccharina was also cultured on the frames. To do this, seeded L. saccharina string 

was cut into 10 cm sections. Two of these sections were interwoven into the lay of each 

80 cm length of 10-mm three strand polypropylene rope of which there were two on 

each frame. One string was inserted ten cm from the top and the second ten centimetres 

from the bottom of the ropes. These ropes were attached to the bottom corner of the 

frames with a small lead weight (sinker) at the base of the ropes to keep them vertical. 

Where only one rope was attached to a frame a weight was attached to the opposite 

corner to balance the frame. 
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Figure 4.3 Frame positions at Calbha, 2004. 

Palmaria palmata growth measurement 

Palmaria palmata sporelings were checked on the seeded string before deployment into 

the field. Maximum size of the plants at deployment was consistent 2-3 mm in length 

across batches. On each visit to the site, the seeded P. palmata strings were unclipped 
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from the frames and photographed on a plastic tray with rulers for later image analysis. 

Growth of plants was monitored using the length of the five longest plants on each 

string. Measurements were obtained from photographs of the strings using the image 

analysis program ImageJ. Subsequent verification in 2005 proved the validity of using 

either this attribute or photographic area (see Figure 4.4 a-c) as a proxy for biomass 

increase. The non-linear relationship between plant area and weight is due to the 

overlapping of fronds with the larger plants. There may also be some thickening of the 

thallus with increasing plant size. 



 108

 

 

 

y = 0.9211x + 63.81
R2 = 0.8625

0

200

400

600

800

1000

1200

1400

1600

0 300 600 900 1200 1500
Photographic Area (cm2)

Ex
tr

ap
ol

at
ed

 A
re

a 
(c

m
2 )

 

Figure 4.4 a) Extrapolated area (product of length of string with Palmaria palmata and 
mean plant height of the five longest plants) versus photographic area. Measurements 
were taken at harvest in June 2005 (for details see chapter 5). 
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Figure 4.4 b) Palmaria palmata photographic area versus wet weight. Measurements 
were taken at harvest in June 2005 (for details see chapter 5). 
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Figure 4.4 c) Wet to dry weight for Palmaria palmata harvested from strings on 
frames. Measurements were taken at harvest in June 2005 (for details see chapter 5). 



 109

 

Epiphytes 

Epiphytes are a common problem for cultured macroalgae (e.g. Fletcher 1995; 

Buschmann et al. 2001a). A measure of epiphyte cover was developed based on the 

quantity of epiphytic growth occurring on the bare sections of string. This was done 

using image analysis. The length of the string with epiphytes was measured and the 

apparent surface area taken up by the epiphytes calculated using ImageJ. This gave for 

each string, a value for the epiphytic cover per length of string (area per length of string: 

cm2 cm-1). Epiphytes were identified to species level where possible; otherwise, they 

were grouped to an identifiable classification level e.g. ‘fine red algae’ which would 

have included species such as Ceramium spp. and Polysiphonia spp. 

 

Laminaria saccharina growth measurement 

The length of the five longest L. saccharina plants were determined for each buoyed 

frame at harvest (15/6/2004). Until late summer, length of L. saccharina blades directly 

reflects growth rate and productivity. After late summer, blades of first year plants 

begin to erode from the tips and the hole punching technique (Parke 1948) is a more 

appropriate method for estimating growth rates. Laminaria saccharina grows from the 

base of the blade and erodes from the tips after mid summer. After mid summer growth 

can be monitored by holing the thallus in the middle of the blade, usually with a 0.5 cm 

hole punch, 15 cm up from the stipe-blade junction. The change in distance between the 

stipe-blade intersection and the hole between time intervals is the rate of growth of the 

plant (see Chapter 5) 

 

Subsequent verification demonstrated the utility of using length measurements as a 
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proxy for growth and production of L. saccharina bundles (a bundle of L. saccharina 

arises from each 10 cm section of L. saccharina seeded string, see chapter 5 and Figures 

4.5 a & b). On 15 June 2004, the first batch of L. saccharina plants was harvested for 

analysis of novel polysaccharides (Cumashi et al. unpubl.) and measured. 

Measurements were continued on the second batch of L. saccharina outplanted in May 

but loss of the plants due to poor growth and fouling limited the integrity of these data 

and so they are not presented. 
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Figure 4.5 a) Mean length of the five longest plants as a predictor of bundle weight, 
Badcall Farm, 2005. 
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Figure 4.5 b) Mean length of the five longest Laminaria saccharina plants as a 
predictor of bundle weight, Calbha longline (growth period: 25/01/2005 – 22/06/2005). 
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Palmaria palmata harvesting 

In the first week of December 2004, all seeded lines were harvested from the frames. 

Each line was photographed, and then divided into sections based on dominant 

organisms. These were: fine red algal epiphytes, mussels or P. palmata. The lengths of 

each of these sections was measured and weighed. 

 

Statistical analysis 

Data were grouped for frames on the basis of their distance from the fish cage groups 

and comparisons were made using analysis of variance (ANOVA) using General Linear 

Modelling (GLM). Data was tested for normality (Anderson-Darling test) and 

homogeneity of variance (Bartletts test). Data was transformed where required. Post hoc 

comparisons were done using a Tukey test. Statistics packages used were Minitab and 

JMP IN (SAS). On all graphs error bars are 95% confidence intervals unless otherwise 

specified. 

 

Results 

Seasonality of spore release – Palmaria palmata. 

More than 50% of the 2003-2005 WEST site plants were tetrasporic from December 

through to April with a few being found to be tetrasporic as early as October (Figure 

4.6). Seasonality of the intertidal BAY and EAST plants was less obvious. The EAST 

intertidal plants followed a similar pattern to the WEST except for an anomalously high 

point in June of 2005. The season for tetrasporic plants at the BAY site began later than 

the other two sites and extended later into the summer with tetraspores being found on 

these plants until at least July (2004 & 2005). Both of the eastern sites (EAST and 
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BAY) were sampled less frequently due to the more wave-exposed nature of the site 

resulting in fewer collections for the winter months in particular.  
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Figure 4.6 Percentage tetrasporic Palmaria palmata plants determined for three sites at 
Easdale, Isle of Seil: 2003: diamonds, 2004: squares and 2005: triangles. Numbers 1 to 
12 are the months January to February. 
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Method comparison – Palmaria palmata 

A synopsis of the cultured batches for Palmaria palmata is contained in Table 4.2. A 

successful culture was one that resulted in an even spread of plants over the substrate of 

at least 10 spore for each centimetre of string. Culture success varied between methods 

with the ‘tumble’ having the higher proportion of successes. The ‘free’ method in 

particular resulted in higher epiphytism rates, more variable settlement and occasional 

batches where there were no germinating spores for without any obvious reason. There 

appears to be little difference in spore output per amount of plant material between the 

different methodologies for a given month. However, there appears to be a greater 

output for months February to March when compared with November to January.  

 

East versus west side of peninsula 

For the batch initiated 4/3/2004, source plants were collected from two sites, one each 

side of the small peninsula at Easdale and eastern (EAST) and western (WEST) spore 

survival contrasted. Both lots were treated similarly however all the WEST cultures 

failed within two weeks. This indicates possible high variability in spore survival even 

from plants sourced from within 50 m sections of the coast. 

 

Contaminants 

Algal contaminants in the cultures were common, more so with the ‘free’ method. First 

colonisers were diatoms. Later colonisers were green algae including Enteromorpha spp 

(Ulva), a small flagellate green alga and Cladophora spp. A tubular small brown alga 

was occasionally seen as well as the results of cross contamination from Laminaria 

saccharina cultures. Two filamentous red species were observed and tentatively 

identified as Ceramium spp and Polysiphonia spp. Diatom contamination was 

controlled through the addition of GeO2 and other contaminants were controlled by 
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limiting the addition of nutrients. 

 

Table 4.2 Synopsis of culture details for algae cultured 2003- 2005. 
Run 
No. 

Culture 
initiated 

Type Thallus 
Area 
(cm2) 

Wet wt 
(g) 

Area / 
bit 

(cm2) 

Wet / 
Dry wt 
ratio 

Spores / 
area 

thallus 
(cm2) 

Spores / 
wet wt 

 (g) 

Successful

1 23-Dec-03 Shock 599.3 22.5 7.5  73.7 1965 No 
2 09-Jan-04 Free 630.0 23.6 8.2    Yes 
  Shock 1321.5 49.6 11.3    Yes 

3.1 15-Jan-04 Free 523.5 19.6 7.8 10.8 93.9 1875 No 
3.2  Free 462.8 17.4 8.4 10.5 41.9 938 No 
3.3  Free 628.4 23.6 7.5 9.3 64.2 1625 No 

  Shock 1196.0 44.9 7.8 8.4 135.2 3831 No 
6-E1 04-Mar-04 Free 238.0 8.9 6.4 10.6 673.6 13136 Yes 
6-E2  Free 273.1 10.2 4.6 9.9 351.5 10442 Yes 
6-E3  Free 350.8 13.2 4.9 9.8 405.9 12140 Yes 
6-W1  Free 424.5 15.9 10.1 8.3 290.4 8638 No 
6-W2  Free 430.4 16.1 9.2 8.5 187.4 5321 No 
6-W3  Free 515.0 19.3 18.4 7.5 177.1 5727 No 

2 03-Nov-04 Free 2854 107   26.9 714 Yes,2 out 
of 3 tanks 

2 09-Dec-05 Tumble 12829 481   39.6 1058 Yes 
3 11-Jan-05 Tumble 16884 633   168.1 4485 Yes 
4 11-Feb-05 Tumble 12589 472   266.1 7098 Yes 

   Max    673 13136  
   Min    41 938  
   Mean  8 9 226 5266

 

Laminaria saccharina culture results 

Cultures of Laminaria saccharina were always successful; in fact, there were problems 

with the alga being too successful. On occasion, P. palmata cultures were contaminated 

by L. saccharina cultures. Laminaria saccharina cultures proved to be very robust, 

withstanding adverse environmental conditions such as being transferred by car to and 

from Loch Duart and extended times in culture without maintenance. The cultures were 

also resistant to overgrowth by incidental epiphyte contamination. 

 

Palmaria palmata growth on site 

Batches of P. palmata grew best from April to July with maximum mean RGRs of .025-
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.03 cm cm-1 day-1 (Figure 4.7, Table 4.3)  Across all batches, position relative to the 

cages made little difference to growth rates (Figure 4.8, Table 4.4). However, results for 

individual batches shows that while this appears to be the case for the February 

outplants, for the March and May outplants, the plants farthest away from the farm 

cages appear to grow better than plants grown close to the cages (Figure 4.9). 

 

 

Figure 4.7 a) Change in length for Palmaria palmata batches deployed at Calbha in 
2004 (vertical bars indicate 95% CI). 

 

 

Figure 4.7 b) Change in RGRs for Palmaria palmata batches deployed at Calbha in 
2004 (vertical bars indicate 95% CI). 
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Table 4.3 Number of measured lines used for data presentation in the graphs in Figure 
4.7. 

Date Feb Mar No 

1 

Mar No 

2 

May 

11/5/04 19    
16/6/04 20 6 5  
14/7/04 20 11 7 4 
23/8/04 19 13 13 11 
30/9/04 18 13 12 8 

16/11/04 11 8 5 6 
 

 

Figure 4.8 a) Change in length for Palmaria palmata deployed at Calbha in 2004 at 
varying distances from fish cages (vertical bars indicate 95% CI). 

 

 

Figure 4.8 b) Change in RGRs for Palmaria palmata deployed at Calbha in 2004 at 
varying distances from fish cages (vertical bars indicate 95% CI). 
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Table 4.4 Number of measured lines used for data presentation in the graphs in Figure 
4.8. 

Date Close Far Mid1 Mid2 
11/5/04 7 4 5 4 
16/6/04 9 11 8 4 
14/7/04 12 15 8 6 
23/8/04 18 17 10 8 
30/9/04 18 12 8 10 

16/11/04 12 8 6 3 
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Figure 4.9 Mean of the mean five plant lengths for Palmaria palmata frames grouped 
by distance for each batch. Each point represents measurements for 1 to 8 frames with 
an average of 3.5 for May, June, July and August, 3 for September and 2 for November. 
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Palmaria palmata string harvest 

Two way ANOVA, unbalanced, for factors of batch and distance on the total harvest 

weight of strings from the frames in November 2004 shows highly significant results for 

batch and distance with a non significant interaction. Tukey post hoc tests show the 

final batch (May) to be significantly lighter than the first (Feb) and the Mid1 strings to 

be significantly lighter than strings from the other three sites (see table 4.5). When 

analysed for component organisms, ANOVA for fine red algae and mussel weights 

reflected these results. Differences for P. palmata on its own with distance were not 

significant. 

 

Table 4.5 Results of two way analysis of variance for harvested seeded strings. 
Superscript letters indicate results that are significantly different. Results that share the 
same letter are not significantly different Two way ANOVA: Batch F(3, 64) = 5.78, p = 
.001, Distance F(3, 64) = 12.74, p = <.0001 Interaction non significant. . 
 

Batch  Mean Wt (g) 
Feb  166.91 a 
Mar No 1 108.74 b 
Mar No 2 111.36 b 
May  68.06 b 

 
Where  Mean Wt (g) 

Close  163.45 a 
Mid1  38.15 b 
Mid2  114.35 ab 
Far  139.12 ab 

Epiphyte cover 

Total cover of epiphytes on the strings peaks in August and the strings that were in the 

vicinity of the cages had the most cover (see Figure 4.10). Cover declines after August 

to September with a slight rise for November. This pattern is consistent across batches 

however it is particularly accentuated for the February outplants. 

Epiphyte species 
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Epiphytes species were determined principally from photographs which limited the 

level of discrimination. The principal groupings were 1) ‘fine red algae’ which included 

Ceramium spp and Polysiphonia spp, 2) ‘Palmaria palmata’ and 3) ‘mussels’ believed 

to be Mytilus edulis but this grouping was a suite of animal species including encrusting 

bryozoans and an herbivorous snail species: Lacuna vincta (Montagu 1803). Other 

minor species included Cladophora spp, Ulva spp, Enteromorpha spp, fine filamentous 

browns and the occasional thallus brown. 

 

Patterns across the sampling sessions and batches (Figures 4.11 & 4.12) showed early 

settlement, development and dominance by fine red algae, followed by P. palmata and 

then mussels from September onwards. Coincident with the establishment of the 

mussels was a decline in the fine red algae and P. palmata. The earlier outplanted 

strings (Feb) had a higher later incidence of mussels. Of the sites, the Mid2 sites 

showed greatest incidence of mussels followed by the Farm site with the least at the 

Mid1 sites. Palmaria palmata was most successful at the Far sites and for the earliest 

batch (February outplant). 
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Figure 4.10 Epiphyte growth on culture strings by batch and distance from the cages as 
measured by area of epiphytes per length of string (vertical bars indicate 95% CI). 
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Figure 4.11 Percent incidence of seeded strings with the epiphytes: fine red algae, 
Palmaria palmata and mussels for each batch. 
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Figure 4.12 Percent incidence of seeded strings with the epiphytes: fine red algae, 
Palmaria palmata and mussels with distance from the farm cages. 
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Laminaria saccharina growth 

Mean lengths Laminaria saccharina for frames as measured at harvest at Calbha on 

15/6/04 were converted to frond weights as per the length-weight relationship (Figure 

4.13) determined for cultured L. saccharina fronds in the following years harvest 

(Badcall harvest, June 2005, see chapter 5). This makes it possible to estimate weight 

differences for L. saccharina fronds with distance from farm cages (Figure 4.14) which 

would be directly related to potential crop harvest differences. Mean maximal weight 

for fronds grown 500 m from the farm cages is 42.3 ±10.1 g (s.e., n = 3) which 

compares to a value of 90.8 ± 0.8 g (s.e., n = 17) for L. saccharina grown within 250 m 

of the cages i.e. an increase of 215 %. 
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Figure 4.13 Graph showing the relationship between blade length and weight for 
Laminaria saccharina for June 2005 harvested plants at Badcall Bay. 
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Figure 4.14 Relative Growth Rates  for Laminaria saccharina(19/2/2004 to 15/6/2004) 
based on weights of the five longest plants of frames against distance of the frame from 
the fish farm cages. Lengths converted to weights based on length / weight conversion 
obtained at June 2005 harvest, see chapter 5 for details: 

Lamwt = 40.64 * Lamlength
2.0885. 

Lamwt = Laminaria saccharina blade weight. 
Lamlength.= Laminaria saccharina blade length. 
 

Discussion 

Palmaria palmata culture 

Mass cultivation of P. palmata will be dependent on having efficient means of 

cultivating the alga at the necessary scales. Some estimates of farm production using the 

string and longline method require upwards of 20 kilometers of string to be seeded per 

hectare (Browne pers com; 66 x 7m ‘droppers’ per longline, 40 longlines per hectare). 

Current methods seed string sections of 20 to 100m. For commercial realization, 

techniques will have to be scaled up two orders of magnitude. The trials of the three 

differing techniques as part of this project show that the tumble method has the greatest 

potential for seeding large quantities of substrate. It has the advantages of: 

• More even distribution of spores on culture surfaces, 

• low labour requirements, 

• the ability to determine the density of spores on the substrate giving a more 

even distribution, 



 127

• more control over the quality of the spores through being able to ‘wash’ 

them before introduction to substrate media, 

• less stress on the spores themselves as there is no ‘shock’ incentive to spore 

release potentially giving greater survival, 

• greater control over epiphytes by minimizing the chances of their 

introduction in the first instance and 

• the ability to obtain larger quantities of spores (through continual spore 

release) and thus seed more area. 

 

For the ‘tumble’ method of spore release, while plant fragments were tumbled for three 

days and spores collected over this period, there would appear to be no reason why the 

cultures could not be maintained indefinitely, keeping conditions optimal for growth of 

‘brood’ stock plants so that the spores could be continually produced and released for as 

long as possible. 

 

The more even distribution of spores over culture surfaces using the ‘tumble’ and 

‘shock’ method arises because the spores are non-motile. With these methods, the 

spores are evenly distributed in the culture solution when added to the tanks resulting in 

an even distribution throughout the tank and on the substrate as they settle. With the 

‘free’ method, spores fall directly from fronds on to the substrate resulting in a very 

patchy distribution. 
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A  study on the reproductive periodicity of P. palmata in the UK on the Isle of Man by 

Kain (1982) found most plants were reproductive during the first five months of the 

year, with about half the plants bearing tetraspores and most of the remainder bearing 

spermatia after January. All were sterile from August to October. All plants sampled by 

Kain were epiphytic, inhabiting the distal end of Laminaria stipes. Kain (1982; 1989), 

in a comparison of fertility of nine species of red algae, found differences in 

reproductive status within a species depending on position on the shore and depth but 

she believed a lot of the differences were attributable to the size and the age of the 

plants. 

 

In this study, a small proportion of plants of P. palmata were tetrasporic in October and 

this is in agreement with the study by Le Gall et al. (2003) from field observations on 

the presence of fertile tetrasporophytes made from October to May along Brittany and 

Normandy coasts. However, mature tetrasporophytic fronds of P. palmata were found 

earlier at Roscoff (October) than further East in the English Channel (January), 

corresponding to earlier occurrence of lower temperatures in late autumn at Roscoff.  

Kain’s studies were based approximately 180 km south of Oban and the later season 

there may be due to warmer waters in this area compared to Oban. 

 

Pang and Lüning (2004; 2006) attribute tetraspore initiation to short days and low 

temperatures indicating that these together may function as an "early warning system" 

as in many other seaweed species (Lüning 1990; Dring 1991), ensuring the new P. 

palmata male gametophytes and juvenile tetrasporophytes are present for vigorous 

vegetative growth in spring at optimum irradiance and daylength conditions. From a 

biogeographical view, Kain (1986) states that low temperature and short days as 
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possible triggers for reproduction in P. palmata may be a reflection of environmental 

conditions in the centre of the geographical range of this species, which is in the Arctic 

region. 

 

The plant’s growth cycle may also influence seasonality of reproduction. For a 

population of P. palmata in northern Spain, two distinct phases in the growth cycle 

were reported, a phase of active growth from March to August and a quiescent phase 

with predominance of frond breakage (negative elongation rates) from August to March 

(Martinez and Rico 2002; Faes and Viejo 2003). 

 

This current study suggests variation in seasonality of spore production in P. palmata 

over short geographic distances of less than 50 m. The seasonal cycle for the subtidal 

plants was delayed by one to two months. This may reflect the lower light levels 

experienced by the predominantly subtidal algae and the lower variations in temperature 

due to immersion in seawater for much of the time. The results indicate that it may be 

possible to find reproductive plants (tetrasproric) for a much greater proportion of the 

year if all possible habitats are searched for fertile plants at times normally considered 

out of season, however the overall relative abundances will be a lot less. It may be 

possible to initiate cultures at times now considered as not possible using plants sourced 

from the field. If cultures can be initiated in autumn, the yield at harvest would be 

greater in the following summer before bleaching and fouling can occur. Future 

culturing of P. palmata should include investigations into the relative viability of spores 

collected through the year from differing habitats. 

 

Pang and Lüning (2004; 2006) induced tetrasporic plants from sterile plant fragments 

within two months in the laboratory through manipulation of light (short days) and 
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temperature (10oC). They also successfully maintained P. palmata in tank culture with 

high levels of production. These two factors could also be utilized to produce spores 

throughout the year by modifying culture conditions including temperature and light. 

While Pang and Lüning (2004; 2006) claim the principal factors are daylength and 

temperature in tetrasporic formation they did find some tetrasporic plants in June. 

 

An attempt was made to induce tetraspory in plants as part of this project. October 

collected plants were maintained in 10 x 10 liter containers, each with a starter 10 g wet 

weight of material, at 10oC, 100 μmol photons m-2 sec-1 and short days on full nutrients 

for three months from 8/10/04 to 7/1/05. Relative growth rates were recorded of 0.05 

cm2 cm-2 day-1 however no significant levels of tetraspory were achieved during this 

period. The findings here are fairly inconclusive but indicate that more work needs to be 

done to ensure tetrasporic production on demand. One possible influencing factor is the 

importance of thallus size (and age?) for reproduction (see Kain 1982, 1986). 

 

Current models for P. palmaria production suggest a requirement for 20 km of seeded 

string per hectare (Browne 2001, pers com). This assumes droppers on the longlines at 

spacings of 15cm which may be unrealistically close due to the risk of tangling the 

lines. One possibility may be to seed nets, using similar methodology as that used for 

Porphyra cultivation in Asia (Sahoo and Yarish 2005). Another shortfall in the current 

cultivation system is the substrate used: Kuralon string. This is sourced from Korea 

which is not convenient. While Browne (2001) experimented with a number of possible 

substrates, the range of types have not yet been exhausted and white multifilament 

nylon twine as currently sourced commonly from ships chandlers and hardwares may be 

a possibility. Porphyra culture net which had been tried by Browne (2001) and 

apparently discounted on the basis of its colour (orange) not being suitable for seeing 
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developing spores should probably be revisited. The methodology used for seeding 

Porphyra nets in Asia should also be more closely examined to see if some of the 

technology can be adapted for culture of P. palmata. 

 

Laminaria saccharina culture 

Of the two algae, L. saccharina was by far the easier of the two to culture. Also, yield 

per cm of seeded string was greater and the seedlings were very robust all reflective of 

this alga’s ‘weed’ like growth strategy. In the field, ten centimeter sections of seeded 

string were inserted within the strands of 10 mm polypropylene droppers. Each of these 

10 cm sections of string gave rise to more than 10 kg of L. saccharina (see also chapter 

5). This contrasts with P. palmata which gave rise to a maximum 100 g from similar 

lengths of string. 

 

The spores of L. saccharina are motile which means that spores of L. saccharina can 

more readily attach to vertical surfaces. Palmaria palmata spores in contrast are not 

motile, so seeding is restricted largely to horizontal surfaces. Seeding with L. 

saccharina can include string that is wound on to cylinders which can sit vertically in 

the inoculating media thus reducing the area in tanks taken up by substrate. 

 

Palmaria palmata outplants 

The best results were obtained for the February outplants of P. palmata. This follows 

logically as the plants were deployed earlier in the growth season and thus had a greater 

time period to establish. The greater proportion of frames for this outplant with 

successful P. palmata may be a reflection of plants establishing before epiphytes are 

prevalent. Progressively later batches had a proportion of frames with P. palmata but 
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this may also be reflective of decreasing optimal growth conditions with warmer waters 

and decreasing available ambient nutrients (see chapter 1). 

 

Growth of the smaller P. palmata plants for the February outplant and later appeared 

best away from the cages which is not expected if the nutrients near the cages are 

enhancing growth. However, once the plants are greater than 10 cm in length, they 

appeared to grow well wherever they are. This may be a reflection of increased 

competition with epiphytes and/or particulate matter on the lines when they are less than 

10 cm. 

 

The reduction in growth for most batches for August-September may be partly due to 

low ambient nutrients however some bleaching of the plants was observed early in this 

period. Bleached plants often die off with individuals that were large and mature in July 

senescing from the tips in September and November. August-September is also the time 

when epiphytic animals such as mussels start to become obvious and smother the plants 

and this continues up until December. Settlement of herbivorous snails is also likely to 

be an influencing factor. 

 

The ‘Far’ sites were subject to greater wave exposure than the rest of the sites thus 

potentially confounding influencing factors. Farm cages are sited in wave sheltered 

areas, and most of the ‘Far’ sites were in more wave exposed locations. Changes in 

nutrient concentration with distance were thus not the only variable that was differing 

with the more distant sites.  Wave action may serve to keep the strings relatively clear 

of epiphytes. The southern ‘Far’ sites however, which were more protected from wave 

action showed similar patterns in success and growth of Palmaria palmata to the 

northern ‘Far’ more protected sites indicating this may not be that significant a factor. 
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There appeared little difference in results for the N. Ireland and SAMS cultured P. 

palmata (Mar No 1 & Mar No 2). The N. Ireland plants were slightly more successful 

in terms of the number of frames that yielded P. palmata but growth rates were similar. 

A visual comparison of plants showed the fronds of the N. Ireland plants to be less 

dissected with longer internodal lengths. 

 

Laminaria saccharina outplant 

Laminaria saccharina plants grown close to the cages (<250 m) were more than twice 

as heavy as plants grown away from the cages at harvest suggesting a benefit from 

being grown in the proximity of the cages. Some inconclusive growth rate comparisons 

(relative growth rate values: RGRs) comparing growth rates close versus those at 

distance from the cages suggest varying results (not presented here), with growth rates 

being favoured either close or at distance from the cages for time periods of one-two 

months. The harvest of plants after the same time interval suggests that integrated 

effects are for greater growth and productivity closer to the cages. Plants in the second 

crop did not grow well after August-September and often had epiphytic animals such as 

the bryozoan Membranipora sp. Plants from the original crop on droplines when 

harvested in December had only stipes remaining, the rest having apparently been eaten.  

 

Summary 

The earlier in the season that the seeded lines are put in to the water the greater yield of 

P. palmata and L. saccharina before they become susceptible to swamping by epiphytic 

animal species in the following summer. For both plants, outplants could go into the 

water as early as September when the seasonal settlement of larval animals from the 

previous season is likely to have finished. This correlates well with the timing of 
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Japanese ‘forced’ cultivation of the biennial crop Laminaria japonica. This plant 

normally matures over two years when initiated in winter which is when it is normally 

reproductively mature. By manipulating the life cycle, the plant is made reproductive in 

early autumn and the alga then completes its life cycle by the following summer 

resulting in larger yields of the alga in a shorter time. This way also, the plants are very 

well established by the time algal epiphytes are prevalent in early spring. 

 

Cultures of P. palmata may be initiated out of the currently accepted season by sourcing 

‘brood stock’ plants naturally from micro habitats that support conditions suitable for 

later tetraspore development such as dark cool areas. 

 

Cultures of P. palmata may also be initiated out of the currently accepted season by 

artificially manipulating their reproductive cycle in the laboratory or hatcheries. 

Potentially, plants seeded in one season could be held over to the following season by 

slowing their growth or by freezing such as is done for Porphya culture in Japan. 

 

The ‘tumble’ method of spore release for P. palmata currently appears to have the best 

potential for seeding lines in the quantities required for commercialization.  

 

Investigations should be initiated into seeding nets. These have better potential for 

providing commercial quantities of P. palmata. 

 

For this trial, while the growth of L. saccharina appears to be enhanced by growing 

close to salmon farm cages, the effect, if present at all, was not as evident for P. 

palmata. On the contrary, early development of P. palmata may be inhibited. This may 

be through competition with epiphytes or particulate matter on the lines. 
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Declining ambient nutrients in late spring, with lengthening days and conditions of still 

clear weather can result in bleaching of P. palmata. This results in lower quality crops 

and can lead to loss of plants. The bleaching is caused by UV damage to the plants or 

prolonged nutrient depletion or a combination of both. Bleaching of P. palmata was 

first noted in these trials in June. For optimal quality P. palmata, harvesting is best 

conducted before bleaching occurs unless bleaching can be prevented e.g. by lowering 

the crops in the water column. 

 

Settlement of epiphytes and nutrient depletion is exacerbated in areas of low water 

motion. Growth and condition of cultured algae, particularly P. palmata is likely to be 

improved in areas of moderate water movement. This may be in areas of tidal currents 

or exposure to swell wave action. In Calbha Bay proper, water motion was relatively 

low (see chapter 2). 

 

Harvest of P. palmata and L. saccharina is best done before the establishment of the 

epiphytes. Epiphytic animals include mussels and bryozoans which cover and swamp 

the algae resulting in decreasing growth and even loss of plants. The epiphytes also mar 

the quality of the harvested algae. The epiphytes become obvious in July. 

 

If P. palmata settlement densities are high, epiphytes are likely to be limited and/or 

prevented from establishing. Nutrients from the salmon cages are likely to enhance 

growth of both fine filamentous algae and cultured seaweeds. By seeding lines with 

dense numbers of the desired plants, epiphytes have no space in which to become 

established. 
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CHAPTER 5 

YIELD OF PALMARIA PALMATA AND LAMINARIA 

SACCHARINA ADJACENT TO FISH FARM CAGES. 
 

Introduction 

The aim of this section was to determine the effect of proximity to fish farm cages on 

yield of cultured macroalgae, specifically Palmaria palmata and Laminaria saccharina, 

over a growth cycle. Water motion has been identified as a factor affecting macroalgal 

production (Hurd 2000) and possibly a confounding factor for P. palmata grown in 

2004 at Calbha (Chapter 4), so this factor was also investigated for these two species. 

 

Results of the previous season’s culturing at Loch Duart Ltd. indicated that, for P. 

palmata at Calbha, the earlier in the growing season the alga was deployed at the farm 

site, the more likely was the success for the alga’s ongoing growth and yield (see 

chapter 4). A growing season was considered to be from early winter to early summer. 

Sporelings put out later than February were found to be inhibited in their early 

development, and more likely to be over-grown with epiphytes. If the alga can be 

deployed in the winter or even earlier, the alga appears to be more able to compete with 

epiphytes such as other algae. 

 

The previous season’s cultured P. palmata suffered from bleaching in June. The 

bleaching coincided with extended periods of clear skies and calm seas and is likely to 

be caused by either high light (Hanelt and Nultsch 1995; Sagert and Schubert 1995; 

Cordi et al. 1997) or nutrient deprivation, or a combination of both (Harrison and Hurd 

2001). Often the affected algae did not recover, died back from the tips and were 
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subsequently more susceptible to enhanced settlement by epibionts. Bleaching of the 

alga is undesirable as is believed to contribute to a lowering of the customers perception 

in quality thus affecting its commercial value. 

 

Both P. palmata and L. saccharina that were outplanted in late winter or early spring 

were, by November, covered by epibionts such as mussels, bryozoans and herbivorous 

snails (chapter 4). For optimal quality of harvested P. palmata and L. saccharina, the 

algae must be out of the water by July or even June. Multiple harvests of either alga do 

not appear to be a possibility if the algae are to be left in the water later than June, due 

to loss in quality and settlement by other organisms. 

 

These results may be particular to the less wave-exposed areas of this part of the coast, 

such as where the salmon cages are sited, but these are the conditions under which the 

algae must be grown if they are to benefit from salmon farm-derived nutrients. 

Palmaria palmata in particular is normally found in wave-exposed rocky shore areas 

and thus is able to withstand, and is likely to thrive, in high energy areas. Under 

conditions of exposure to wave action or high currents, P. palmata may be resistant to 

epiphytes. 

 

For this part of the project a growth cycle was considered to be from when the 

sporelings are put into the ocean, before February, to when they are harvested before 

July. 

 

The principal interest is in growing commercial amounts of these algae. In order to 

incorporate variation in yield over a growth cycle, a number of sites both close to and 

far from farm cages was required. Culturing at a commercial scale requires longlines 
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and setting up enough of these to rigorously test for yield differences was beyond the 

resources of this project. Also, culturing these quantities of algae without guaranteed 

markets is difficult to justify, so a proxy was developed. The proxy was the use of 

buoyed frames that supported smaller numbers of seeded lines. These could be deployed 

more easily than longlines and enabled a number of sites to be set up away from the 

cages (Figures 5.1 & 5.2). 

 

Three long lines were also established, two away from the cages and one adjacent to a 

farm cage group. Buoyed frames set up adjacent to these longlines would allow 

comparisons to tell us how representative these sites were of the area. The gauge of 

whether or not there were differences between yields of algae close to, and away from, 

the farm was based on the quantities of the algae harvested at the end of the growth 

cycle. Growth of algae both adjacent to and away from the farm cages was also 

monitored for shorter time periods. Chemical content of the algae, specifically nitrogen 

content was tested on the harvested algae to estimate how much nitrogen was absorbed 

by the algae (see chapter 7 for results). Water samples were taken at each of the sites to 

confirm differences in nutrient availability between each of the sites (see chapter 2 for 

results). 

 

Exposure to water motion has been identified as a principal factor affecting the growth 

and production of macroalgae (Hurd 2000). Water motion can serve to break down 

boundary layers at the algal surface to facilitate nutrient uptake, but too much water 

motion can lead to breakage and loss of the plants. Water motion can also assist the alga 

in competing with epiphytes where the motion of the plants under the influence of water 

movement ‘sweeps’ the surrounding area clear of less structurally sound competitors. 
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Buoyed frames were put out at a number of sites of varying exposure to water motion to 

investigate the influence of this factor on culture of P. palmata and L. saccharina. 

 

 

Figure 5.1 Map showing the location of the salmon cages at Badcall Bay (walkways A, 
B & F, with fish 2004/5), frames (small stars) and longlines (lines with circles). 
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Figure 5.2 Map showing the location of the salmon cages at Calbha (walkways C, D & 
E, with fish 2003/4), frames (small stars) and longlines (lines with circles). Note 
longline located where cages had been the year before. 
 

Methods 

Frames 

To obtain comparisons across multiple sites from a range of environmental conditions, 

frames to support L. saccharina and P. palmata (see Figure 5.3) were developed. The 

inner section of the frames supported up to four seeded strings (P. palmata) while two 

weighted short 80-cm lengths of 10-mm polypropylene ropes hung from the bottom side 

of the frame corners supporting the L. saccharina. A ten-cm section of L. saccharina 

seeded string was intertwined at each end of these 80-cm ropes (i.e. four seeded strings 
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per frame). Each seeded 10-cm length of string gave rise to a ‘bundle’ of mature L. 

saccharina plants. The strings seeded with P. palmata were at 2 m depth and the L. 

saccharina ropes were at 3 m depth. A weight was attached mid-water on the mooring 

line so that the line with the buoyed frame hung vertically and minimised the chances of 

the L. saccharina being abraded by the mooring line (see also Figure 4.2, chapter 4).  

 

At Calbha and Badcall Bay, ten sites were established: three buoyed frames were 

deployed at each site to give a total of thirty frames. Three sites were adjacent to fish 

farm cages (at Badcall Bay: FarmN, FarmSW and FarmSE) and seven at other sites 

distant from fish farm cages (Sheltered, OutsideSW, OutsideMS, OutsideSE and 

CalbhaRef; see Figures 5.1 and 5.2) including adjacent to the two reference longlines 

(CalbhaLL and BadcalLL). The sites away from the farms were situated in areas of 

varying exposure to water motion in order to determine how this factor might influence 

plant yield. At the farm sites, the frames were deployed within 5 to 20 m of the fish 

farm cages. At FarmSE and FarmSW, the frames were 5–10 m from the southern side of 

the cages and at FarmN, the buoyed frames were 10-20m from the north eastern end of 

the cage group. 
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Laminaria saccharina frame harvest 

The two rope sections, each with two bundles of L. saccharina, were harvested from 

each frame. Some bundles were estimated to have as many as 100 plants although 

commonly there were 20-50. Plants did not attach directly to the rope due to its smooth 

surface texture, but their haptera wound around the rope. This meant that the hold of the 

bundles on the rope became more challenged as the bundles grew, particularly in the 

more wave-exposed locations, and a few were lost. Each of the ropes, with attached L. 

saccharina, was weighed using a spring balance on the boat, and the presence and 

condition of the bundles noted. Some bundles appeared to have been abraded against 

the mooring rope (a few of the mid-water weights became detached). Three L. 

saccharina plants from each frame were analysed for nitrogen and carbon content (see 

chapter 7 for results). 

 

 

Figure 5.3 Construction of frames to support strings of Palmaria palmata and ropes 
with bundles of L. saccharina. 
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P.palmata string 
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Palmaria palmata frames 

Palmaria palmata seeded string was put onto the frames on 25/1/05 and 24/2/05 (two 

batches). On each occasion, two 80-cm sections of string were attached to each frame 

giving four strings in total (six per site per batch). The frames were 1.5 m wide, so the 

distance between the strings was approximately 37 cm. Plastic clips were attached to the 

frames to hold the lines for easy deployment and to take on and off for monitoring if 

necessary. Only batches with good even settlement were used on the frames and 

settlement was assumed to be consistent across all seeded strings. 

Palmaria palmata frame harvest 

At harvest, each of the four strings with attached algae from each frame was 

photographed and weighed. A sample of at least five plants from each frame was 

retained for analyses of nitrogen and carbon isotopes. Photographs of strings with 

attached algae were analysed using ImageJ (http://rsb.info.nih.gov/ij/) to determine the 

length of the five longest P. palmata plants, the length of line colonised by the plants 

and the surface area taken up by the plants as presented in the photograph. 

 

A selection of 20 harvested lines was used to obtain relationships between photographic 

derived measurements and wet and dry weights. After weighing wet, the algae were 

dried in an oven at 90oC until a constant weight was achieved and recorded (see chapter 

4 for graphed results). 
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Palmaria palmata growth rate 

Seeded lines from a subset of frames were photographed on 29 April 2005 (CalbhaRef, 

CalbhaLL, OutsideE, OutsideW, FarmSE and FarmSW). Adverse weather and time 

prevented photographing all frames. Photographs were analysed using the image 

analysis program ImageJ (http://rsb.info.nih.gov/ij/) to obtain the length of the five 

longest plants, the length of line colonised by plants and the area presented to the 

photograph taken up by the plants. Growth was compared between this sample period 

and at harvest (22/6/05) using differences in the length of the longest five plants on each 

string to calculate relative growth rates (RGR) where 

 

RGR = ln (Li/L0) 
           Δt 

 
Li = initial mean length (g) 

L0 = final mean length (g) 

Δt = time (days) 

Longlines 

The surface section of the longlines consisted of 50 to 80 m lengths of 3 cm diameter 

polypropylene rope with 11-inch trawl floats every 10 m to ensure that the line stayed 

afloat after attachment of droppers and to make the line obvious to shipping to limit the 

chances of it being run over. The droppers consisted of either: 

1/ Palmaria palmata: 1-6-m lengths of seeded P. palmata string (depending on the total 

length in the batch) with a weight at the bottom to ensure the droppers hung vertically 

and did not tangle; or 

2/ Laminaria saccharina: Ten centimetre lengths of seeded string were intertwined into 

the lay of 7 m lengths of 10-mm three strand polypropylene rope also with a weight at 

the base to keep the line vertical. 
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The fish farm cage longline was attached to ‘F’ walkway at Badcall Bay (see Figure 

5.1). Here, one end of the longline was attached to the fish farm cages and the other 

anchored to the adjacent coast approximately 60 m distant. 

 

One reference longline was deployed at the head of Badcall Bay (BadcallLL, Figure 

5.1) at least 500 m from the closest fish farm with a second reference longline at Calbha 

(CalbhaLL, see Figure 5.2). Calbha is approximately 3.5 km south of Badcall Bay. The 

Calbha longline was placed over a site where there had been salmon cages the year 

before. The two reference longlines consisted of 100+ m of 3-cm diameter 

polypropylene line with a 100+ kg anchor at each end. Two large cylindrical buoys 

approximately 1.5 m long by 0.9 m in diameter were attached at each end of the 50+ m 

long surface section of the longline. 

Laminaria saccharina longline 

Culture of L. saccharina sporophytes was conducted as described in Chapter 4. 

Sporophytes of L. saccharina approximately 6 weeks of age and 0.5 mm in length 

seeded on to Kuralon string were outplanted into the field. The density of spores on the 

string was even and in the order of tens of plants per centimetre. Culture of L. 

saccharina was conducted in 10-litre rectangular containers. Each container produced 

10 m of seeded string. The string was cut into 10-cm sections on site and then entwined 

into three-strand 10-mm polypropylene rope. This rope formed the ‘droppers’. Each 

dropper was 7 m long and attached to the head-rope of the longline. Droppers were 

weighted at their base usually with a half a house brick to keep them vertical. One 

seeded 10-cm string was intertwined into the rope at depths of 1, 2, 3, 4 and 5 m depths 

on each dropper. 
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Droppers with L. saccharina were deployed twice in the 2004/5 growing season. A 

small number were put out on 23 December 2004 on the farm and Badcall reference 

longlines. The weather turned for the worse when deploying these plants with rain and 

gale force winds. This, or the time of the year they were put out, caused these lines to 

give poor results and are not considered further. The principal batch was deployed on all 

three longlines on 25/1/05. Three groups of five droppers were attached to each longline 

in order to provide sufficient replication to allow comparisons within longlines and 

between the farm and the reference sites. Droppers were 1 m apart and the groups were 

distributed evenly at least 10 m apart over the length of the line. Groups from the farm 

longline were termed Farm1, Farm2 and Farm3 numbering out from the cages. 

Laminaria saccharina longline harvest 

For droppers on the longlines (as for the frames), numerous L. saccharina plants arose 

from each 10-cm section of seeded string forming bundles of plants. Each bundle was 

considered as an individual unit for site and depth comparisons. On the farm site, each 

bundle of L. saccharina was weighed separately using a spring balance. On the two 

reference longlines, each bundle was weighed separately for a random subset of five 

droppers. For each of the weighed bundles for the farm and Badcall longlines, the 

length of five of the longest plants was also measured. For the remaining droppers, total 

weight was obtained which included all bundles from each dropper.  

 

Three plants were kept from 1, 2, 3, 4 & 5 m depth from each group of longlines to 

analyse for total nitrogen and carbon, and for nitrogen and carbon isotopes. Sampled 

plants were kept cool, and the following day in the laboratory, sub-samples were taken 

mid-lamina from a point approximately 10 cm above the stipe-blade intersection. These 

were freeze dried for later analyses. Plants from the farm and Badcall longline sites 

were used for length and weight measurements back at the laboratory. The data were 
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necessary for production estimates from length increment results (see chapter 4 for 

graphed results). 

Palmaria  palmata longlines 

Palmaria palmata was seeded on string as described in chapter 4. To determine the 

optimal time for outplant of P. palmata, droppers consisting of weighted sections of 

seeded line were put out on three occasions from three separate plant batches (see Table 

5.1). These were on 21/12/04, 25/1/05 and 24/2/05. On the first occasion, only the 

Badcall longlines were available. The seeded line (26 m) was divided up to give 7 

droppers at BadcallLL and 6 at the FarmLL each approximately 2 m long. On the 

second and third occasions, the amount of available seeded line (approximately 150 m 

and 300 m) was divided to give three groups of five droppers on each of the three 

longlines. Each dropper was approximately 3 m long for the 25/1/05 outplant and 

approx 6 m long for the 24/2/05 outplant. 

 

As the seeded lines were only 2 mm in diameter, they were not attached directly to the 

longline. Instead they were attached with clips to 1.5 m sections of 10-mm 

polypropylene ropes that were tied off on to the longlines. The top of the seeded string 

was set at 1 m depth because growth below this depth had been shown to be optimal by 

Browne (2001) and the results the tethered plants (see chapter 3). Droppers were 

weighted with circular net weights and were approximately 70 cm apart on the 

longlines. Groups of droppers were evenly distributed over the longline. The size of the 

P. palmata plants at time of outplant varied up to 3 mm in length. Plant densities on the 

lines varied depending on the success of settlement. One of the sub-batches (one of two 

put out on 25/1/05) had patchy settlement. Sub-batches were evenly distributed between 

sites and groups. 
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Palmaria palmata longline harvest 

Because the P. palmata string droppers were of differing lengths, only the top metre 

was considered in detail for comparative purposes. This was cut off from the remainder, 

weighed and the number of plants estimated. The lengths of five of the longest plants 

from each string were measured. Where there was good growth on lower sections of the 

dropper, this was divided into metre lengths and each length was weighed, providing an 

estimation of weight variation with depth. 

 

Representative plants were sampled from each metre, from each group, for analyses of 

total nitrogen, carbon and nitrogen and carbon isotopes (see chapter 7). 

 

Table 5.1 Culture history for algae outplanted to longlines and frames at Loch Duart 
Ltd. 2004/5. 

Source Culture initiated 
Date of 
Outplant 

Days after 
initiation 

Harvest 
date 

Days at sea

 P. palmata 
L. 
saccharina  

  
 

Seil 03/11/2004  21/12/2004 48   
Seil  03/11/2004 21/12/2004 48 15, 22/06/05 176, 183 
Seil 09/12/2004  25/01/2005 47 15, 22/06/05 141, 148 
Seil  09/12/2004 25/01/2005 47 15, 22/06/05 141, 148 
Seil 11/01/2005  24/02/2005 44 15, 22/06/05 111, 118 
Seil 11/02/2005  29/03/2005 44 15, 22/06/05 78, 85 
 

Harvest Timing 

Based on the previous year’s experience (2004; see chapter 4), for optimal quality P. 

palmata, the crop must be harvested before the plants are bleached and before the 

establishment of epiphytic animal communities. After bleaching, most of the larger 

plants die off and are more subject to epiphyte colonisation. Bleaching occurs in early 

summer when there are prolonged periods of calm weather with clear skies. This was 

predicted to occur in late June. However in 2005, bleached plants were observed in late 

May and the decision was made to harvest all the seaweeds from the longlines and 
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frames as soon as possible after that date. All longlines were harvested between 15th & 

17th June 2005 and frames on 22nd and 23rd June 2005. 

Laminaria saccharina growth rates 

A selection of L. saccharina plants was retained from the BadcallLL harvest for 

redeployment at sites adjacent to and at distances from the farm cages to look at short 

term growth rate differences during summer using the hole punch technique (Parke 

1948). One hole was punched 10 cm above the stipe-blade intersection using a 5 mm 

hole punch. Four plants were attached to 2 frames to give 8 plants at each of the three 

Badcall farm cage groups and three ‘away’ sites (BadcallLL, Sheltered and 

OutsideMS). The frames on the cages were hung from the walkway on the south facing 

sides of the cages. Frames were put out on 30/6/05 and were reassessed on 23/8/05 after 

an interval of 54 days. 

Environmental variables 

The environmental variables of principal interest for seaweed culture were ammonium 

concentration and water motion. Other environmental variables measured were nitrate, 

nitrite and phosphate concentrations, water clarity and water movement. Nutrient 

concentrations were measured as detailed. Results were presented in chapter 2. Water 

motion differences were estimated using the dissolution rate of plaster of Paris cylinders 

(see below) and irradiance variation between the sites was determined using a Secchi 

disk. On two occasions, profiles of salinity and temperature were measured using a 

CTD (Conductivity-Temperature-Depth Instrument: Sea-Bird Electronics Inc. Bellevue 

WA USA: 19 CTD profiler, profiling mode, sampling rate 2Hz) and temperature data 

across the sites were obtained from the salmon farmer (see Appendix 1). Fish farm 

personnel measure temperatures at 5 m depth and Secchi depths at least twice a week at 

sites where fish farming is in operation. 
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Water movement 

Relative water movement differences were estimated using a variation of the plaster 

clod method first used in marine plant ecology by Doty  (1971) and most recently 

reviewed and modified  by Jokiel and Morrissey  (1993) and Porter et al. (2000). Dental 

plaster (JW Super Yellow, www.johnwinter.co.uk) was used and mixed at the rate of 

2.9 kg of plaster to 900 ml of water. Polypropylene pipe was used for moulds to give 

cylindrical casts 44 mm in diameter, 50 mm high and weighing approximately 150 g. 

After casting, the cylinders were dried at 50oC for 48 hours and then weighed. They 

were then attached to plastic bases with epoxy and reweighed before attachment to the 

frames in the field. After retrieval, the cylinders were dried at 50oC for 48 hours and 

reweighed and loss of plaster calculated. 

 

Plaster cylinders were used for water movement estimates twice, the first from 2/6/05 to 

16/6/05 (14 days) and the second from 16/6/05 to 23/6/05 (7 days). Over the first 

period, the plaster was coated with marine varnish (polyurethane) on the sides to limit 

the dissolution rate. This was done as it was believed that a measure of the dissolution 

rate might be obtained from height measurements of the cylinders as they dissolved 

from the upper exposed surface. Also, painting the sides was believed to slow the 

dissolution rate, so that the cylinders could be left in the water (and thus integrate water 

motion) over a longer period of time. For this first session, two cylinders were attached 

on each frame (i.e. six replicates per site). All cylinders were facing upwards at the top 

of the frames (see Figure 5.4) to minimise the chances of the cylinders rubbing against 

the frame structure and to standardise their exposure to currents and water motion types. 

 

Once on site and in the water, seawater penetrated the polyurethane coating resulting in 

patchy dissolution of the plaster and uneven dissolution rates from the cylinder surfaces. 
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The plaster thus did not dissolve only from the upper surface, making measuring of 

height of the cylinders as an indicator of water movement unfeasible. The results are 

useful, however, as the high level of replication for sites gave good estimates of relative 

water movement rates. 

 

Figure 5.4  Plaster cylinder facing upwards on top of buoyed frame at deployment. 
 

For the second session, the cylinders were not coated and only one cylinder was placed 

on each frame. All cylinders were facing upwards at the top of the frames (see Figure 

5.4) at 2 m depth to give a good indication of relative water movement exposure 

between sites. The frames were subject to some vertical movement, and the cylinders 

incorporated this effect. While currents and wave action are acknowledged to cause 

water flow over plants, some movement also comes from the vertical motion of the 

frames as a result of their attachment to surface buoys. The plaster cylinders integrate 

all water motion contributions. 
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Calibration of the cylinders was achieved in the laboratory by exposing them to 

different extents of laminar seawater flow and monitoring weight loss through time at a 

constant temperature (12.2o C). This was done by mounting cylinders in a 2.0 m 

diameter tank on a rotating arm at various distances from the central axis. The speed of 

rotation was set (one revolution per minute) and dissolution monitored through 

weighing once a day for 7+ days. The rotating motion of arms caused the water in the 

tank to rotate due to entrainment effects, meaning that the speed of the water over the 

arms was reduced. To estimate the speed of rotation of the water, a small glass vial half 

filled with water was introduced to the tank at a point half way along the arms. The time 

for the vial to complete a full rotation of the tank was measured on a number of 

occasions throughout the trial. The time of rotation was assumed to be proportional to 

the speed of entrained water and was subtracted from the known speed of the arms to 

give the actual speed of water across the arms. 

 

Porter et al.  (2000) claimed that plaster clods are good for estimating either turbulent or 

laminar flow, but results for a combination of water movement types are equivocal. 

While water movement exposure in the tanks does not necessarily directly relate to 

water motion exposure in the field, the calibration standardisation process enables 

comparison with other studies. 

 

Light 

An estimate of water clarity was obtained using a Secchi disk. A Secchi disc is 20 cm in 

diameter with alternating quarters of its upper surface painted black and white. The disc 

is lowered through the water until it is lost from view and then pulled up until it 

reappears. The depth at which it reappears is noted, this is done three times for a site 
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and the mean ZSD  used.. Kirk (1994) describes the Secchi disc as a crude visual method 

for estimating the attenuation coefficient, Kd, where 

 

Kd = 1.44 / ZSD 

 

The Secchi disc is thus an easy cost effective method for estimating water clarity. From 

Kd, we can estimate the 1% irradiance depths which have relevance for photosynthetic 

organisms. The 10% and 1% irradiance depths are the mid and lower points of the 

euphotic zone within which significant photosynthesis occurs. Downward irradiance 

diminishes in an approximately exponential manner with depth. This may be expressed 

by the equation: 

 

Ed(z) = Ed(0)e-K
d

*z 

 

Where Ed(z) and Ed(0) are the values of downward irradiance at a depth of z m, and just 

below the surface, respectively, and Kd is the average value of the vertical attenuation 

coefficient over the depth interval 0 to z m. At a depth at which irradiance is 1% of 

surface light, z1% = 4.6 / Kd. From secchi disc measurements we can thus obtain a gauge 

of the lower limit of light for growth of kelps. 

 

A standard Secchi disk was used to estimate water clarity on visits to each of the sites. 

Readings were conducted by the same operator to reduce errors due to differences 

between operators. All sites were not measured on every visit. Readings were not 

conducted if it was judged that the disk could not be seen reliably when the water 

surface was too disturbed as a result of strong winds. 
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Statistics 

Comparisons were made using analysis of variance (ANOVA) with General Linear 

Modelling (GLM). Data were tested for normality using an Anderson-Darling test and 

homogeneity of variance was tested using a Bartletts test. Data were transformed where 

required. Post hoc comparisons were conducted using a Tukey test. Statistics packages 

used were Minitab and JMP IN (SAS). Error bars on graphs are 95% confidence 

intervals unless otherwise specified. 

 

Results 

Laminaria saccharina growth rate. 

Survival of the hole-punched L. saccharina plants used for monitoring growth over the 

summer period was low and, for some of the surviving plants, it was difficult to 

distinguish the hole that had been punched in the lamina at the end of the sampling 

period due to the poor condition of the lamina. Where it was not possible to distinguish 

the hole, the plants were excluded from the analysis. Many plants also had epiphytes, 

such as the bryozoan Membranipora sp., covering them.  Mean increments for L. 

saccharina blades using the hole punch technique (Parke 1948) over this sample period 

(30/6/05 to 23/8/05, 53 days) showed greater growth for farm based plants (FarmN, 

FarmSE & FarmSW, mean increment = 50.5 cm) than for non-farm sites (BadcallLL, 

Sheltered and OutsideMS, mean increment = 31.3 cm; ANOVA site: F (4,18) = 0.19 

nested within farm; F (1,18) = 9.31, also see Fig 5.5). 
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Figure 5.5 Mean length increment in Laminaria saccharina plants at four sites between 
30/6/05 and 23/8/05. Numbers of plants measured for the six sites were: 7, 3, 4, 4, 4, 2. 
 

Palmaria palmata growth rate 

Growth rate differences as RGRs show a significantly greater growth rate for the farm 

grown P. palmata than non-farm for the period 28 April 2005 to 22 June 2005 for both 

batches (Table 5.2). However, the initial lengths of the farm plants were smaller than 

those of plants grown away from the farm indicating slower growth and/or development 

up until that time for farm based plants (Figure 5.6). 

 

Table 5.2 ANOVA results for Palmaria palmata. RGRs between  28 April and 22 June 
2005, comparisons for farm versus other sites for the two batches (see also Figure 5.5); 
degrees of freedom, F ratio and significance level. 

 
Batch Mean RGR 

(cm cm-1day-1) 
DF F p 

 Farm Other    
25/01/2005      

Farm 0.018567 0.013791 1, 15 9.62 0.011 
Site 

(nested)  4, 15 7.21 0.005 

24/02/2005      
Farm 0.036582 0.024891 1, 15 10.62 0.009 

Site 
(nested)  4, 15 7.21 0.425 
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Figure 5.6 Mean lengths of Palmaria palmata plants on 28 April and 22 June 2005 
from farm sites (FarmSE and FarmSW and ‘other’ or non-farm sites (CalbhaRef, 
CalbhaLL, OutsideE and OutsideW)::  a) 24/2/05 batch, b) 25/1/05 batch. Lengths 
presented are the mean of mean Palmaria palmata lengths for each site. 
 

Frames with Laminaria saccharina 

Harvesting of frames revealed some losses of L. saccharina bundles which were likely 

to have arisen due to either exposure to wave action or tangling in the mooring lines as a 

result of the loss of some of the mid-water weights (all bundles lost or compromised 

from CalbhaRef). Nevertheless, 49 out of a possible 60 ropes yielded results with a total 

harvest of 764 kg of L. saccharina. Without excluding damaged bundles from the 

analysis and using total weight of L. saccharina for frames, there was a significant 

difference between farm associated (mean wet weight of L. saccharina on frames: 17.4 

kg) and other site frames (mean weight: 11.5 kg, ANOVA Site: F (8,16) = 1.13 nested 

within Farm: F (1,16) = 5.34). 

 

When excluding damaged and missing bundles (ropes with only one bundle or with 

damaged bundles excluded) there was a highly significant difference (p < 0.001) 

between farm (mean rope weight: 9.9 kg) and non-farm sites for individual rope weights 

(mean rope weight: 7.8 kg, Figure 5.7). Damaged and missing bundles were excluded as 
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there are factors other than nutrient availability from the farm cages affecting their 

weights. Water motion for instance, would cause loss and damage of bundles. 
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Figure 5.7 Mean rope weights with Laminaria saccharina for each site. ANOVA 
Frame nested: F (10,13) = 2.50 within Site: F (7,13) = 6.15 nested within Farm F (1,13) = 
19.12. Values which share a letter are not significantly different at p = 0.05. 

Frames with Palmaria palmata 

A total of 18.6 kg of P. palmata were harvested from all the frames. The earlier batch 

outplanted on 25/1/05 gave the greater yield of the two batches. For analysis of data 

from the earlier batch, seeded strings with less than 10 cm coverage of P. palmata were 

taken out of the analysis. Lines with greater than 10 cm coverage of P. palmata were 

more likely to have fewer epiphytes, or to have been subject to mishaps and had a more 

even settlement of P. palmata along the length of the string (5 strings excluded from 

62). Results of ANOVA show that Farm grown lines had greater biomass (Mean wet 

weight: 347.2 g/80 cm) than non-farm sites (Mean weight: 213.5 g/80 cm, Site nested 

within Farm, Farm: F (1,46) = 6.75, Site: F (8,46) = 1.84, Figure 5.8). While frames were 

placed to optimise their exposure to light, soon after the initial deployment of seeded 

strings at FarmSE, salmon cages were moved as part of farm operations and placed very 

near the frames at this site resulting in shading of the frames. FarmSE gave the lowest 

yield of the farm frames for P. palmata (and L. saccharina). 
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Figure 5.8 Mean Palmaria palmata string weights for 25/1/05 outplants for each site. 
No significant difference was observed between individual sites, but the combined 
results from the three farm sites were significantly higher than all other sites. 
 

Palmaria palmata strings outplanted on 24/2/05 showed no significant difference 

between sites (ANOVA, Figure 5.9) or between farm and non-farm string weights. The 

mean yield per string across all sites was nearly a fifth of the outplant from the previous 

month (58.8 g and 249.9 g, respectively). The relative weight yields between the sites 

for the two cultured algae: P. palmata and L. saccharina show similarities for the 

25/1/05 outplant and there was a highly significant correlation between the two species 

(Pearson’s correlation coefficient: r = 0.65, p = <0.01, Figure 5.10). 
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Figure 5.9 Mean Palmaria palmata string weights for 24/2/05 outplants for each site. 
No significant difference was observed between sites. 
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Figure 5.10 Correlation between Laminaria saccharina (mean rope weight) and 
Palmaria palmata (mean rope weight ) for each frame (25/1/05 outplant only) for each 
site (Pearson’s correlation coefficient: r = 0.65, df = 24, p < 0.01). 
 

Longlines with Laminaria saccharina 

All 10-cm Laminaria saccharina seeded strings gave rise to bundles of L. saccharina 

except the 1-m depth bundles from group 2 of the farm longline. There was no evidence 

of L. saccharina on group 2 ropes at 1 m depth except the original bare 10-cm pieces of 

string. A possible explanation for this may be that a boat had crossed the line and cut 

the upper bundles free. To simplify comparisons, all Farm group 2 bundles were 

eliminated from all analyses. All longline bundles were harvested between the 15th & 

17th June except for a line from two of the Badcall longline groups. These were kept for 

later harvest for chemical analysis and to provide plants for the hole punch growth 

comparison. The harvested plants gave a grand total from the longlines of 940 kg of L. 

saccharina. 

 

There are no obvious trends for biomass along any of the longlines, either for the farm 

longline with distance from the cages, or for the Calbha and Badcall longlines with 

distance from either end (which might result from orientation with prevailing currents 

etc.). Analysis of variance for the total weight of droppers between longlines shows that 
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the BadcallLL droppers have a greater biomass than either the Farm or Calbha longline 

groups (Figure 5.11). 

 

 

Figure 5.11 Mean weight of Laminaria saccharina harvested from each dropper for 
each of the three longlines: the farm longline and the two reference longlines at Badcall 
and Calbha. Values which share a letter are not significantly different at p = 0.05. 
ANOVA group: F(5, 30) = 1.27 nested within longline F(2, 30) = 25.95. To compare group 
mean dropper weights, group 2 droppers at the farm were eliminated because of the loss 
of the 1 m bundles. 
 

Individual bundles were weighed for all the groups on the farm longline and for five 

droppers from the reference longlines at Badcall and Calbha. The Farm 2 dropper 

bundles were not included in any analyses due to the loss of the 1 m depth bundles. A 

two-way analysis of variance of all the bundle weight data showed highly significant 

differences among groups and depths, but no significant interaction between groups and 

depths. The mean weight of the BadcallLL bundles was greater than the Farm 3 bundles 

and the CalbhaLL bundles (Figure 5.12). The 1 m bundles were significantly heavier 

than those at all greater depths, and the bundles at 2 and 3 m were heavier than those at 

4 and 5 m (Figure 5.13). An exponential curve shows a good fit to the weight 

distribution of the bundles with depth, and probably reflects the reduction in available 

irradiance with depth. 
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Figure 5.12 Laminaria saccharina harvested per bundle from each dropper from each 
of the three longlines. Values which share at least one letter are not significantly 
different at p = 0.05. Two way ANOVA Site/group: F (3,79) = 7.13, Depth: F (4,79) = 
47.14, no interaction. 
 

 

Figure 5.13 Yield of Laminaria saccharina harvested per bundle for depths across all 
groups. Values which share at least one letter are not significantly different at p = 0.05. 
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Longlines with Palmaria palmata 

The Palmaria palmata longlines were of variable success. Two factors working against 

their success were 1) the loss of longlines due to inadequate structural support in rough 

seas and 2) variable seeding success. Structural support failed where the seeded lines 

slid along the longlines, and merged and tangled. Also, not all lines were evenly seeded. 

A ‘batch’ refers to all plants that were deployed at a given time; a ‘sub-batch’ refers to 

individual bins from which the lines may have been seeded in the laboratory. While 

every care was taken to seed all bins evenly, checks on the lines in the bins before 

deployment showed variation between sub-batches (but not for the frame-seeded lines). 

However these sub-batches were divided evenly amongst the groups on the longlines. 

Hence the assumption is that variation between groups was similar when they went into 

the water. Table 5.3 summarises the seeding history. The total mass of P. palmata 

harvested from the longlines was 18.1 kg. 
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Table 5.3 Culture history of Palmaria palmata droppers. The  ‘Droppers remaining’ 
column relates to the number of droppers relocated from each batch at harvest in June 
2005. 
 

Date Where Group Original 
number 
strings 

Droppers 
remaining 

Droppers 
with 

>20 plants 
in first 
metre. 

21/12/04 BadcallLL 1 7 6 3 
 Farm 1 6 6 4 
25/01/05 BadcallLL 1 5 5  
  2 5 4 4 
  3 5 1  
 CalbhaLL 1 5 3 2 
  2 5 5 1 
  3 5 5 1 
 Farm 1 5 4 1 
  2 5 3  
  3 5 3 1 
24/02/05 BadcallLL 1 5 1  
  2 5 5 4 
  3 5 4 2 
 CalbhaLL 1 5 4  
  2 5 5 1 
  3 5 4  
 Farm 1 5 5 1 
  2 5 5 2 
  3 5 5 3 

 

Longlines: Palmaria palmata: plant numbers in the first metre 

Plant numbers were taken as an indicator of plant survivorship. Plant numbers were 

estimated for the first metre of the line. Statistical comparisons were conducted using 

the Mann-Whitney non-parametric post hoc test. For the December batch that showed 

the best overall yield, and for the January batch, there were no significant differences 

between the site droppers in the number of plants initiated in the first metre of the string 

(see Figure 5.14). For the February batch, BadcallLL had significantly higher numbers 

of plants than CalbhaLL, but not significantly different from FarmLL. The survivorship 

of the FarmLL plants was not significantly different from that of the Calbha longline. 
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Figure 5.14 Mean estimated number of plants in the first metre of the droppers for 
Palmaria palmata outplanted in a) 21/12/04, b) 25/1/05 and c) 24/2/05 at harvest. 
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Longlines: Palmaria palmata: yield 

For productivity comparisons, the length of string with P. palmata attached (>10 cm for 

frame strings) or number of plants in the first metre of droppers (>20) is taken as the 

mark for a successful seeding. These cut-off marks were used because lines remaining 

in the analysis had good plant cover with plant sizes that were reflective of site results 

generally. Seeded lines at harvest with greater than 10 cm coverage of P. palmata were 

more likely to have fewer epiphytes and were less likely to have been subject to adverse 

conditions that may have rubbed plants off. This has necessitated pooling across groups 

within longlines for statistical analyses. 

 

For the droppers outplanted on to the longlines on 21/12/04, the yield of the Badcall 

reference longline droppers was greater (Mean fresh weight: 937.3 g in the first metre, 

Figure 5.15) than the farm droppers (Mean fresh weight: 267.7 g, ANOVA F(1,4) = 

17.4). There was no significant difference between sites for the 25/1/05 and the 24/2/05 

outplants between farm and non-farm outplanted droppers. Figure 5.16 shows the 

relationship between wet weight of P. palmata and depth from the longlines when 

compared to the first metre weight. 
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Figure 5.15 Mean mass of plants at harvest in the first metre of the droppers for 
Palmaria palmata outplanted in 21/12/04 (g, fresh weight). 
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Figure 5.16 Mean Palmaria palmata yield per metre depth as a proportion of the mass 
of plants in the first metre of the dropper. This decline gives an indication of how yield 
of Palmaria palmata varies with depth. 

Light 

Secchi disc readings show no significant differences between sites, although there was a 

tendency for farm sites and the sites that were further towards the head of Badcall Bay 

to have reduced Secchi readings (Table 5.4). Secchi mean values for the sites ranged 

from 8 to 10 m. This corresponds to light values of 1% of surface irradiance varying 

between 25.6 and 32 m depth and 10% at 12.8 and 16 m depth or Jerlov coastal water 

types 1 – 3 (Jerlov 1976). The amount of light reaching seaweeds can determine growth 

differences and is dependent to a large extent on the transmittance of the water (Lüning 

1990, Dring 1991). Here, transmittance is unlikely to have influenced growth 

differences between sites as there is little difference in water clarity and the 1% and 

10% surface irradiance depths were consistently greater than the depth at which the 

algae were grown. 
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Table 5.4 Secchi disc readings taken at each of the sites during the term of the project. 
Date 25/02/05 29/03/05 27/04/05 01/06/05 22/06/05 29/06/05 Average 

BadcallLL 10.7 8.5  8.8 9 12.5 9.9 
CalbhaLL 9.2 12.8 8.7 7 9 12 9.8 
CalbhaRef 9.2 10.9 9 6.2 9 12.6 9.5 
FarmN 7.6 10.5 6.4 7.9 8 11.2 8.6 
FarmSE 7 9 7 7.9 7 10.8 8.1 
FarmSW 8.5 9.9 7.7 7 8.5 10.5 8.7 
OutsideE 10 11 8.5 8 9.7  9.4 
OutsideMS 9.8 11  7.4 9  9.3 
OutsideW 9.5 12  6.7 8.5  9.2 
Sheltered 8.3 9  7.3 7 8.5 8.0 
Average 9.0 10.5 7.9 7.42 8.47 11.2 9.0 
 

Temperature 

Water temperature readings for the three sites are presented in Appendix 1. Over the 

three years of the project they showed an annual water temperature variation going from 

a minimum of 7o C in March to a maximum of 15o C in July and August across the three 

sites. The pattern of temperature variation within years does not appear to vary greatly 

between the sites although, in 2003, water temperatures reached 16oC. 

Water movement 

Percentage loss of plaster from cylinders for the two sessions is presented in Figure 

5.17. The first session cylinders were coated with the polyurethane. Despite there being 

six replicates there is higher variability than for the second session. One advantage of 

the coated cylinders was the slower dissolution rates meaning that water movement 

could be integrated over longer periods of time. There is a good correlation for the ten 

sites between the two sessions (r = 0.7, df = 8, p < 0.05) but because of the lower 

variability for the second session, these results were used for correlation against algal 

yield. 

 

For the calibration exercise, measurement of entrained currents by the stirrer arm 

indicated a lap speed of 2.5 minutes for middle section of the arms with a slight 
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decrease towards the outer part of the tank (due to resistance of the water current with 

the tank's outer wall). Figure 5.18 shows the calculated adjusted current speeds 

experienced at the level of the cylinders. Calibration of the uncoated plaster cylinders 

showed an even dissolution with time and good reproducibility between cylinders 

(Figure 5.19).  

 

Correlation of harvest production of P. palmata with water movement (Figure 5.20) 

indicates that water movement may be a factor in optimising yield. There is an apparent 

reduction in yield with relatively high and low water movements as indicated by plaster 

loss of the cylinders. 
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Figure 5.17 Mean percentage loss of plaster from cylinders for each site for: above) 
first session:  2/6/05 to 16/6/05 and: below) second session: 16/6/05 to 23/6/05, (±95 % 
CI). 
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Figure 5.18 Dissolution rate as measured for the plaster cylinders in the tank as 
percentage per day versus actual and corrected current speeds over seven days. 
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Figure 5.19 Calibration of plaster cylinders: percentage loss of plaster cylinders with 
time under various current speeds. Values on the right are corrected current speeds in 
cm s-1. There were duplicate runs for 0.5, 3.4 and 5.8 cm s-1. 
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Figure 5.20 Mean Palmaria palmata harvest string weight versus plaster loss for each 
frame. Linear regressions are fitted for values greater and less than 65% plaster loss 
showing possible trends. There are apparent low yields of Palmaria palmata under high 
and low relative water movement as reflected in plaster loss from the cylinders. 
 

Discussion 

Short term measurements of growth of L. saccharina (summer) and P. palmata (late 

spring) both show evidence of enhanced growth close to the cages: L. saccharina 

increased by 61% and P. palmata by 38% and 44% (January and February deployed 

batches). However, the initial lengths of the P. palmata plants appeared to show better 

growth prior to these growth measurements for the plants away from the farms. 

 

Yields at harvest over a growing season for both L. saccharina and P. palmata show 

enhanced yields for the farm based algae, with L. saccharina frames and individual 

ropes showing a 51% and a 27% increase and P. palmata strings from the January 

outplant showing a 63 % improvement when compared to yields away from the farm.  

 

These findings are comparable with a 40% increase in growth rate for Gracilaria 

chilensis (specific growth rate; 7% day-1) cultivated at 10 m distance from salmon farm 

cages compared to growth at 150 m and 1 km distance in southern Chile during two 

months in summer (Troell et al. 1997). A later study at the same site in Chile (Halling et 



 171

al. 2005), showed little difference between G. chilensis grown 30 m from the cages 

when compared to algae grown 300 m away. This second study however was conducted 

from Autumn to Spring when ambient nutrients may have been higher. Nutrient levels 

were not measured as part of the latter project. 

 

RGRs of P. palmata of 0.013 to 0.036 cm cm-1day-1 for the late spring period compare 

well with values calculated for P. palmata for Calbha in 2004 (e.g. 0.03 cm cm-1day-1 in 

June) and Loch Laxford  in 2003 (e.g. 0.03 cm2cm-2day-1 in May), but are lower than 

values of 0.1 g g-1day-1 for outplanted P. palmata plants measured by Browne (2001) 

and land based tank measurements exceeding 0.1 g g-1day-1 for Browne (2001) and as 

part of this project. Morgan and Simpson (1981c) and Demetropolous and Langdon 

(2004) recorded SGRs in excess of 10% per day for tank based cultures of Palmaria 

mollis. 

 

The enhanced growth of plants near the farms indicates that these algae benefited from 

being close to the cages over a growth cycle, although most of the benefit may have 

been during the late spring to late summer period when ambient nutrient availability is 

usually low. Analysis of nitrogen content of the algae harvested in June showed 

significantly higher amounts in the plants grown close to the cages (chapter 7). 

 

The data suggests that growth is not always enhanced by growing the algae, in 

particular P. palmata, close to the cages. There may even be factors inhibiting growth of 

the algae relative to sites away from the cages prior to summer. This may include 

competition from naturally occurring filamentous algal contaminants whose growth is 

also enhanced near to the cages. There may also be some influence from other farm 

wastes such as particulate matter arising from feed and faeces. This is sometimes found 
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coating algae close to the cages and influences the quality of the plants. This is in 

agreement with the findings in the previous chapter where early development of P. 

palmata appeared to be inhibited. 

 

Contrary to general trends, the Badcall longline away from the fish farm cages had a 

better yield than the farm based longline. The results of the buoyed frames show that the 

Badcall longline site had exceptionally high yields when compared to the other non-

farm site results. Nitrogen isotopes indicate that nitrogen in the Badcall longline plants 

may have been of farm origin (chapter 7). 

 

The trend of decreasing yield of Palmaria palmata with depth on droppers from the 

longlines is consistent with the significant difference between growth of tethered plants 

at 2 m and 7 m depth as described in chapter 3. The results from the tethered plants 

suggest growth rates (change in area with time) was halved at 7 m. Similarly yields at 5 

m are half of those at 1 m on the longlines. The logarithmic decline in yield of 

Laminaria saccharina with depth is consistent with the decline in available light.  

Extrapolating yields of P. palmata over the whole depth range on the basis of yields 

from the first metre should take into account the decline in likely yield with depth. 

 

While proximity to the farm cages appears to favour the growth of L. saccharina in 

particular, water movement relates better to the yield of P. palmata. This is in 

agreement with the natural habitat of these algae. Healthy populations of L. saccharina 

are found in waters sheltered from wave action while P. palmata is found in more 

wave-exposed sites. Large plants of P. palmata up to a metre long have been found in 

high tidal current areas. This suggests that P. palmata is not as suited as L. saccharina 

to being grown adjacent to salmon farm cages in low current areas. Salmon farm cages 
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are usually located in relatively sheltered waters, although tidal currents aid in 

dispersion of waste products. If P. palmata is to be grown adjacent to salmon farm 

cages, then exposure to water motion such as tidal currents will improve the growth of 

the alga. 

 

Overall, the December outplants of P. palmata gave the greatest yield at close to 1 kg 

per metre. Harvest yield may be increased by an earlier deployment to sea than 

December, perhaps August–September after the abatement of threats to the crop from 

epiphytes or larval settlement. How early, may be limited by the availability of fertile P. 

palmata plants for culture. This study has shown that P. palmata has great variability in 

reproductive status within microhabitats from small sections of coast (see chapter 4). 

For example, upper subtidal plants growing on kelp holdfasts may have a delayed 

reproductive season and thus provide reproductive plants for out-planting in August-

September. Another possibility for early maturation of plants may be through 

manipulation of the reproductive cycle through exposing growing plants to short days 

and cooler water (Pang and Lüning 2004; 2006) in on-land culture facilities. 

 

Browne (pers. comm.) has obtained yields of up to 1.8 kg fresh weight of P. palmata 

per metre of longline. Yields at Loch Duart Ltd. may be increased to these levels and 

higher by outplanting earlier in the season. Multiple cropping may be possible if the 

algae are of a sufficiently large size early enough in the season before cutting. This may 

allow growth before being re-cropped prior to the presence of epiphytes in July. Larger 

plants and multiple cropping may also be more feasible if the alga is grown in higher 

water motion areas, such as in tidal currents, that might limit the settlement of epiphytic 

plants and encrusting animals. Higher current areas may also keep the plants clear of 

any particulate wastes emanating from the farm cages. 
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SUMMARY 

Short term measurements of growth rate of Laminara saccharina in summer show a 

61% increase for algae grown close to cages (< 20m) when compared with sites at 

distance. 

 

Short term measurements of growth rate of Palmaria palmata in late spring show a 38-

44% increase for algae grown close to cages (< 20m) when compared with sites at 

distance. 

 

The yield of cultured Laminaria saccharina grown over a growth cycle from January to 

June was enhanced by 12.7-51% for algae grown close to fish farm cages (< 20 m 

distance) when compared to sites away from the cages. 

 

The yield of cultured Palmaria palmata grown over a growth cycle from January to 

June was enhanced by 63% in algae grown close to fish farm cages (< 20 m distance)  

when compared to sites away from the cages. 

 

On Palmaria palmata seeded droppers, maximal yields of 940 g m-1 were achieved. 

This may be improved by deploying seeded lines earlier in the growing season (i.e. 

before December). 

 

Yields of 28 kg per dropper were achieved for Laminaria saccharina on longlines. 

These also may be improved by deploying seeded lines earlier in the growing season i.e. 

before December). 

. 
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Yields of cultured Palmaria palmata are improved under conditions of moderate rather 

than either low or high levels of water movement. 
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CHAPTER 6 

AMMONIUM AND NITRATE NUTRITION OF 

PALMARIA PALMATA 
 
Introduction 

The aims of this section relate to the nitrogen physiology of Palmaria palmata and 

growth of the alga in the vicinity of fish farm cages. The four sections of this chapter 

address the following questions: 

1. Is ammonium inhibitory for Palmaria palmata growth? If so what levels are 

inhibitory? 

 

2. Does P. palmata take up ammonium before nitrate? Does ammonium uptake 

inhibit nitrate uptake? 

 

3. P. palmata can store nitrogen – for what periods can it do so? What internal 

levels of nitrogen are indicative of nitrogen depletion? 

 

4. Where in the thallus is ammonium taken up? Is there translocation of 

nitrogen to new tissue? 
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6.1 Is ammonium inhibitory for Palmaria palmata growth? If 
so what levels are inhibitory? 

 

The overall aims of this project included determining the potential for growing 

commercial seaweeds, principally Palmaria palmata, in the vicinity of salmon cages. 

Early in the project, discoloration had been noted in P. palmata when grown adjacent to 

fish cages at Loch Laxford (Chapter 3). One possibility for the decline in the condition 

of the alga grown adjacent to salmon cages may be a low tolerance to ammonium. This 

experiment was conducted to investigate the response of P. palmata to different 

concentrations of ammonium and nitrate. 

 

 Ammonium (NH4 +) is a paradoxical nutrient ion in that, although it is a major 

nitrogen (N) source whose oxidation state eliminates the need for its reduction in the 

plant cell, and although it is an intermediate in many metabolic reactions, it can result in 

toxicity symptoms in many, if not all, plants when cultured on NH4 + as the exclusive 

N source (Britto and Kronzucker 2002). Sensitivity to NH4 + may be a universal 

biological phenomenon, as it has also been observed in many animal systems, including 

humans, where it has been implicated in particular in neurological disorders. 

 

Studies on Chondrus crispus showed that it grows equally well on NO3
- or NH4

+ (Neish 

and Shacklock 1971). In Gracilaria tikvahiae and Gracilaria cornea, growth rates were 

similar when nitrogen was supplied as NO3
-, NH4

+ or both forms simultaneously 

(Lapointe and Ryther 1978; Navarro-Angulo and Robledo 1999). Gracilaria foliifera 

and Neogardhiella baileyi grew faster with NH4
+ as the N source (De Boer et al. 1978), 

while Gracilaria tenuistipitata and Gracilaria cornea presented similar growth rates 
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under both N sources (Haglund and Pedersen 1993; Navarro-Angulo and Robledo 

1999). Hafting (1999) reported that NO3
- is a better N-source for growth of Porphyra 

yezoensis than NH4
+ in high light (160 μmol m−2 s−1), but no differences in growth 

under NO3
- and NH4

+ were seen in low light conditions (50 µmol photon m-2s-1).  

 

 Ammonium toxicity has been noted for two species of Palmaria; P. palmata and P. 

mollis, when exposed to pulse fertilisation of ammonium for extended periods of time 

(Morgan and Simpson 1981c; Demetropoulos and Langdon 2004). Demotropolous and 

Langdon (2004) found evidence of toxicity in Palmaria mollis cultures supplied with 

2353 μM N day-1 as NH4NO3 after 49 days, and after 14 days when exposed to 7059 

μM NH4NO3 supplied every three day with slow seawater exchange (2.6 g l-1, 1 vol 

exchange day-1). Morgan and Simpson (1981) found decreased growth rates in P. 

palmata with additions of 500 μM NH4
+ four times a week at 6.25 g l-1 and 3-4 tank 

volumes day -1. In other red algae, daily additions of greater than 10-20 mM ammonium 

was toxic for Gracilaria parvispora in tanks when preparing for oceanic cage culture in 

Hawaii at 6.8 kg m-3 and 5% water turnover day-1. (Nagler et al. 2003). Decline in 

growth at 110 μM NH4
+ for Gracilaria (and Cladophora) was noted by Peckol and 

Rivers (1995) at 1 g l-1. Iwasaki (1967) observed that NH4Cl inhibited the growth of the 

conchocelis phase of Porphyra tenera at 7.0 mM. This compares with no toxicity found 

for several native Northeast American species of Porphyra cultured over 4 weeks  at  

concentrations of 25-300 μM at 0.3g l-1 and 1 volume exchange every 3-4 days 

(Carmona et al. 2006). 

 

For other groups of photosynthetic organisms, Waite and Mitchell (1972) found that 

NH4
+ concentrations as low as 50 μM inhibited photosynthesis in Ulva lactuca and 

(Harlin and Thorne 1977) observed that U. lactuca grew poorly in a closed fish culture 
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system with NH4
+ concentrations of 0.6-1.2 mM. For aquatic angiosperms, levels as low 

as 25 μM NH4
+ have been noted to be toxic for Zostera marina (van Katwijk et al. 

1997). Ammonium is toxic to most commercial fish species at concentrations above 100 

μM (Wajsbrot et al. 1991; Neori et al. 2004). 

 

Land plant species are particularly sensitive to, or tolerant of, NH4
+ as the sole nitrogen 

source and have been the subject of research and speculation. The postulated 

mechanisms underlying ammonium toxicity are diverse. Explanations of the 

mechanisms underlying NH4
+ toxicity have been hampered by numerous 

misconceptions regarding this subject, and many often-cited possibilities have more 

recently been shown to be at best insufficient, partial explanations, or even incorrect. 

These latter include the uncoupling of photophosphorylation by NH4
+ in plants; the 

effects of external pH declines resulting from NH4
+ acquisition; the role of biochemical 

pH-stat mechanisms in cells accounting for differences in the internal H+ balance 

associated with differences in NH4
+ and NO3

– metabolism; the accumulation of free 

NH4
+ in plant tissues (including, specifically, the cytosol); and the higher root carbon 

allocation to amino acid synthesis under NH4
+ nutrition. More plausible explanations 

include the involvement of ethylene synthesis and action as a key plant response to 

NH4
+ stress; the role of NH4

+ membrane flux processes, particularly the energy-

demanding active efflux of cytosolic NH4
+; photosynthetic effects, particularly with 

respect to photoprotection; and displacement of essential cation concentrations from 

homeostatic set points in subcellular compartments (Britto and Kronzucker 2002). 

Methods 

Sub-tidal P. palmata was collected on 29 July 2004 from Seil Island, Scotland 

(56.45422o N, 005.44393 o W).  The apical tips of the field collected P. palmata were 

cut into 3 cm lengths and were cleaned by rinsing with filtered seawater and followed 
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by gentle wiping to remove epiphytes. The clean tips were then placed into large 10–

litre transparent plastic containers filled with 8 l of filtered seawater, that was aerated 

vigorously. Algae used in the experiment were acclimated by culturing for up to three 

days in a temperature controlled room at 11°C on a 16:8 light:dark cycle under 

approximately 100 µmol photon m-2s-1 of irradiance. 

 

Twelve apical tips equivalent to 0.8 g fresh weight per container were used. The algae 

were cultured in seawater with varying levels of nutrients representing eight treatments, 

each conducted in triplicate. These were: 1) 3520 µM (NH4)SO4; 2) 880 µM (NH4)SO4; 

3) 500 µM (NH4)SO4; 4) 100 µM (NH4)SO4; 5) 50 µM (NH4)SO4; 6) 3520 µM NaNO3 ; 

7) 880 µM NaNO3 and 8) 50 µM NaNO3. All treatments also received phosphate 

(NaH2PO4.H2O) and trace metals at f/2 medium concentrations (Guillard and Ryther 

1962). Once a week, the algae were measured and seawater media with nutrients 

exchanged. The experiment was run for three weeks. 

 

Data analysis 

Relative growth rates (RGR) were calculated using the equation:  

 

RGR = ln (Wi/W0) 
              Δt 

Where :  

Wi = initial wet weight (g) 

W0 = final wet weight (g) 

Δt = time (days) 

Where data met with the pre-conditions of normality, homogeneity of variance and 

independence, the difference between treatments was analysed by using ANOVA using 

Minitab statistical analysis programme. 
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Results 

Data were tested and found to be normally distributed (Anderson-Darling Test for 

Normality, p > 0.05), with equal variances (Test for Equal Variances, Bartlett’s Test, p 

> 0.05) and were then subjected to ANOVA and Tukey’s pairwise comparison. 

 

All nitrate treatment concentrations and the two treatments with the lowest 

concentration of ammonium (100 µM NH4
+ and 50 µM NH4

+) sustained the highest 

RGR (0.061-0.071g g-1d-1, Figure 6.1) and reached the largest end weight (2.4-2.8 g, 

Figure 6.2.).  Intermediate RGRs and end weights were experienced under treatments 

with medium concentrations of ammonium (880 µM NH4
+ and 500 µM NH4

+
,). In the 

treatment with the highest concentration of ammonium (3520 µM NH4
+) no growth was 

observed after week 1. 
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Figure 6.1 Relative Growth Rates of Palmaria palmata in eight treatments with 
differing NH4+ and NO3- concentrations over the experimental period of 21 days (+/- 
95% CI). Seawater with nutrients was replenished weekly. Values which share at least 
one letter are not significantly different at p = 0.05. 
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Figure 6.2 Cumulative weight of Palmaria palmata cultured in different NH4
+ and 

NO3
- concentrations for three weeks. Seawater with nutrients was replenished weekly. 

 

Discussion 

Palmaria palmata was found to grow in media enriched with nitrogen as either 

ammonium or nitrate. Growth rates achieved during this project are comparable to those 

that have been found previously for P. palmata (Morgan and Simpson 1981) and are 

similar to those found for other red seaweeds (Deboer et al. 1978; Troell et al. 1997; 

Demetropoulos and Langdon 2004)) growing under nutrient enriched conditions. 

 

Low concentrations of ammonium (< 100 μM) sustained the same level of growth as 

did high concentrations of nitrate. High concentrations of ammonium caused 

ammonium toxicity in P. palmata which has also been reported in other macroalgae 

(e.g. Waite and Mitchell 1972; Demetropoulos and Langdon 2004). The results of 

Morgan and Simpson (1981) show consistently improved growth rates for nitrate over 

ammonium however the concentrations of ammonium used in their study were higher 

than those used here. More meaningful comparisons could be derived from experiments 

aimed at determining the effects of temperature, and light on growth taking into account 
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differences induced by pulse additions and continuous exposure to variable 

concentrations of ammonium. These relationships would also be of use when 

extrapolating to field situations. Matos et al. (2006) reported that in tank cultivation of 

P. palmaria, the alga could not survive water temperatures above 21oC when TAN 

(total ammoniacal nitrogen) was near 75.4 μM. It is possible that ammonia at these 

levels in conjunction with temperature might be toxic. 

 

During this experiment, the algae were exposed to high concentrations of ammonium 

over three weeks. However, it is possible that inhibition may have been evident at lower 

concentrations than 100 μM if the ammonium concentrations had been present on a 

continual basis. In this experiment, the ammonium was renewed once per week so the 

algae were exposed to the higher concentrations for short periods of time only once per 

week. The ammonium concentrations would have been gradually reduced during the 

week due to uptake by the plants. More exposure to more constant lower concentrations 

may produce inhibitory effects as has been found for Ulva (50 μM; Waite and Mitchell 

1972) and Zostera marina (25 μM; van Katwijk et al. 1997). 

 

Under the culture conditions presented here, mass balance calculations indicate 2 g 

fresh weight (at the end of three weeks) of P. palmata growing at an RGR of 0.1 g g-

1day-1 will use nearly all of the nitrogen in 8 litres of 100 μM N in a week (assuming 

wet weight to dry weight ratio of 7:1 and 5 % N (dry weight) and no excretion of N 

compounds. As 100 μM is the upper safe level found here, it is possible that ammonium 

becomes inhibitory when it remains excess to requirements. 

 

Ammonium concentrations measured in the field adjacent to fish cages in an oceanic 

environment have been recorded at up to 30 μM (Ahn et al. 1998). This was measured 
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only for a short time interval and mean levels are mostly in the range of 3 to 20 μM (e.g. 

Karakassis et al. 2001). Maximum concentrations measured as part of this project 

adjacent to Loch Duart salmon cages were 8μM. These levels are much less than those 

causing toxicity in laboratory grown P. palmata and are only likely to enhance growth 

of P. palmata in the field. 
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6.2 Does Palmaria palmata take up ammonium before nitrate? 
Does ammonium uptake inhibit nitrate uptake? 

 

Nitrogen uptake has been studied for a variety of macroalgae, but few general patterns 

have emerged concerning N species preference (Hanisak 1990; Lotze and Schramm 

2000; Naldi and Wheeler 2002); some algae take up NH4
+, some take up NO3

- while 

others take up either inorganic N source equally well. The process of nitrogen uptake 

and assimilation in macroalgae involves transport from the water column across the cell 

membrane, followed by incorporation into proteins and macromolecules for growth 

(McGlathery et al. 1996). For NO3
-, there is the additional step of reduction to NH4

+ by 

nitrate reductase after uptake, but before assimilation (Hurd et al. 1995). One 

explanation for NH4
+ preference may be that energy otherwise required for nitrate 

reduction could be saved (Rosenberg and Ramus 1984). However, NH4
+ storage 

capacity may be limited due to toxicity (Waite and Mitchell 1972; Haines and Wheeler 

1978; Lotze and Schramm 2000; Cohen and Fong 2004) although some algae have the 

capacity to store ammonium in vacuoles such as Noctiluca spp, some species of 

Desmarestia and Dictyota and some flowering plants (Raven pers com.) so that the free 

ammonium concentration is low. 

 

The aim of this section was to determine whether NO3
- uptake was inhibited by 

ammonium in Palmaria palmata. 
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Methods 

 

Sub-tidal P. palmata plants were collected on the 29th July 2004. Thirty individual 

plants were collected randomly from Seil Island, Scotland (N56.45422, W005.44393). 

The plants were kept in flow-through indoor tanks with aeration and illumination prior 

to the experimental stage. 

 

Palmaria palmata fronds were cleaned by rinsing them with filtered seawater and 

wiping them gently to remove epiphytes. Full fronds were then placed into 8-litre 

plastic containers with 5 l of filtered seawater that was aerated vigorously and enriched 

with f/2 standard medium (Guillard and Ryther 1962), phosphate and trace metals 

without nitrogen. The fronds were preconditioned for three days in a temperature 

controlled room at 12° C with 16:8 light:dark cycle under 100 µmol photon m-2s-1 of 

irradiance provided by cool white, Osram Lumilux 58 W/840 fluorescent lights. 

 

The uptake experiments were conducted in 3-litre clear plastic vessels filled with 2 l of 

1μm filtered seawater. Each vessel was enriched with phosphate and trace metals as for 

the preconditioning, moderately aerated and inoculated with approximately 10 g wet 

weight of P. palmata fronds. Prior to the addition of nitrogen enrichments to the 

medium the P. palmata fronds were immersed briefly into the experimental vessels and 

then taken out. This was to ensure that any introduced ammonium or nitrate from the 

plants would be accounted for in the initial seawater sample. 
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Four combinations of NH4
+ and NO3

-
 were added: 

 NH4
+ NO3

-  
 (µM) (µM) 
 20 0 
 0 10 
 20 10 
 10 20 
After the addition of ammonium and nitrate to the vessels, the first water sample was 

taken to confirm the initial concentration of the nutrients in the medium. Subsequently, 

each experimental vessel was inoculated with the P. palmata fronds. Three extra vessels 

were used for controls (treatment: 20 μM NH4
+ and 10 μM NO3

-) to monitor the 

potential loss of NH4
+ and/or NO3

- due to factors such as microbial activity and 

vaporisation and no algae were added to these. 

 

The experimental period was 4 h, during which sub-samples were taken at 15, 30, 60, 

120, 180 and 240 min. The water samples were taken manually using a syringe. To 

sample the water, firstly 10 ml of medium was used to rinse the sample bottle and the 

filter paper and then a 50 ml water sample was taken.  

 

The water samples from the uptake experiment were frozen and analysed for 

ammonium and nitrate concentrations within two days of the experiment by using a 

QuickChem 8000 autoanalyser following the method based on Grasshoff (1976). 

Samples were analysed in triplicate. 

 

Dry weights of the samples were determined by drying eight random 10 g sub-samples 

of the preconditioned P. palmata to a constant weight on aluminium trays in an oven at 

55°C. 
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Data analysis 

Uptake rates were normalised to plant dry weight by using the following equation:   

V = ∆N * vol/ (∆t * X) 

Where:  
V = uptake rate (μmol N g dry weight-1 h-1) 
N = NH4

+ or NO3
- concentration of the culture medium 

Vol = volume of medium at t = 0 
t = time (h) 
X = average dry weight of 10 x 10 g wet weight tissue segments 

 

Volumes used in the calculation of uptake rates were adjusted at each time interval for 

samples taken out (60 ml). 

 

Results 

The depletion of ammonium and nitrate from the medium containing approx. 10 g of P. 

palmata fronds during the four hours of the nutrient uptake experiment can be seen in 

Figure 6.3. Within the first two hours of the experiment most of the ammonium had 

been removed from the medium. In all of the treatments the ammonium concentrations 

reached a minimum concentration of 1.2-1.7 µM after which no further decrease 

occurred.  Nitrate concentrations decreased to near zero in all treatments. No significant 

loss of ammonium or nitrate was detected in the control vessels (see Table 6.1). 
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Figure 6.3 Ammonium and nitrate concentrations measured at intervals over 4 hours in 
containers after addition of 10 g fresh weight of Palmaria palmata fronds. The 
containers had seawater with four different initial NH4

+ &  NO3
- concentrations. 

Treatments, a)  high (20 µM) NH4
+ & no NO3

-, b)  no NH4
+ & intermediate (10 µM) 

NO3
- , c)  high (20 µM) NH4

+ & intermediate (10 µM) NO3
- , d) intermediate (10 µM) 

NH4
+ & high (20 µM) NO3

-.  The experiment was conducted under saturating light at 
12° C with moderate aeration. 
 
Table. 6.1 Concentrations of ammonium and nitrate detected at the beginning and at the 
end of the experiment. 
Concentration of nutrient 

added 
At the start of the 

experiment 
At the end of the 

experiment 
NH4

+, 20 µM 19.9 µM 20.1 µM 
NO3

-, 10 µM 13.4 µM 14.0 µM 
 

Ammonium and nitrate were taken up simultaneously by P. palmata.  When nitrate was 

present in the medium the rate of uptake of ammonium by P. palmata was not 

significantly different from when there was no nitrate was in the medium for any of the 

following: 0-15min, 15-30 min, 30-60 min or 60-120min (Figure 6.4 a and c). In the 

presence of ammonium the rate of uptake of nitrate was not significantly different from 

when there was no ammonium in the medium at: 0-15min, 15-30 min, 30-60 min or 60-

120min, (Figure 6.4 b and c). Therefore, there was no evidence for inhibition of uptake 

of either nutrient by the presence of the other.  The highest uptake rate for ammonium 
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(Vmax = 24.1 µmol gDW-1 h-1) was observed with 10 µM ammonium and 20 µM nitrate. 

The positive correlation between uptake rate and concentration of ammonium indicates 

a possible linear relationship between the two. This is not as obvious for nitrate however 

indicating possible uptake saturation at the concentrations used. The nitrate uptake rates 

of P. palmata did not differ significantly in 20 µM or 10 µM NO3
- concentrations or in 

the presence of ammonium. 

 

b)

-5

0

5

10

15

20

25

30

0 60 120 180 240

Time (mins)

U
pt

ak
e 

ra
te

s
( μ

m
ol

 g
D

W
-1

 h
-1

)

a)

-5

0

5

10

15

20

25

30

0 60 120 180 240
Time (mins)

U
pt

ak
e 

ra
te

s
( μ

m
ol

 g
D

W
-1
 h

-1
) NO3- 

NH4+ 

d)

-5

0

5

10

15

20

25

30

0 60 120 180 240
Time (mins)

U
pt

ak
e 

ra
te

s
( μ

m
ol

 g
D

W
-1

 h
-1

c)

-5

0

5

10

15

20

25

30

0 60 120 180 240
Time (mins)

U
pt

ak
e 

ra
te

s
( μ

m
ol

 g
D

W
-1

 h
-1

 

Figure 6.4 Ammonium and nitrate uptake rates of 10 g fresh weight of Palmaria 
palmata fronds in four different treatments at 12°C with aeration, over 0-15, 15-30, 30-
60, 60–120, 120-180, 180-240 min from introduction of the algae. Treatments, a)  high 
(20 µM) NH4

+ & no NO3
-, b)  no NH4

+ & intermediate (10 µM) NO3
- , c)  high (20 µM) 

NH4
+ & intermediate (10 µM) NO3

- , d) intermediate (10 µM) NH4
+ & high (20 µM) 

NO3
-.  The experiment was conducted under saturating light at 12°C with moderate 

aeration. 
 

Discussion 

Palmaria palmata was able to take up ammonium and nitrate simultaneously 

(Figure7.5.) as has been found previously for P. palmata (Morgan and Simpson 1981c; 

Martinez and Rico 2004) and for Palmaria mollis (Demetropoulos and Langdon 2004). 
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The simultaneous uptake of ammonium and nitrate has also been reported for other 

species of red algae, for example Gracilaria foliifera (Delia and Deboer 1978), G. 

pacifica (Thomas and Harrison 1987) and Neogardhiella baileyi (D’Elia & DeBoer, 

1978) as well as for the kelps Laminaria saccharina (Subandar et al. 1993; Ahn et al. 

1998), L. abyssalis (Braga and YoneshigueValentin 1996) and L. groenlandica 

(Harrison 1986).  

 

The presence of ammonium has been found to reduce nitrate uptake for a variety of 

algae such as Gracilaria foliifera (D’Elia and DeBoer 1978), Codium fragile (Hanisak 

and Harlin 1978), Hypnea musciformis (Haines and Wheeler 1978) and Ulva fenestrata 

and Gracilaria pacifica (Naldi and Wheeler, 2002). Ammonium does not seem to 

inhibit the uptake rate of nitrate in several kelps: Laminaria longicruris (Harlin and 

Craigie 1978), L. saccharina and Nereocystis lutkeana (Ahn et al. 1998). 

 

In this study, for Palmaria palmata, the rate of uptake of ammonium was similar to that 

of nitrate at the concentrations investigated. These findings and the rates are comparable 

to the rates determined by Martinez and Rico (2004) for Palmaria palmata. For the 

concentrations investigated, there was a trend towards a linear relationship between 

concentration and uptake rate of ammonium, so that at higher concentrations than those 

tested here, ammonium may have higher uptake rates than nitrate as nitrate appears to 

becoming saturating at the concentrations investigated. Morgan and Simpson (1981a) 

found higher uptake rates for ammonium than for nitrate, but they had concentrations of 

ammonium of 0.5 – 2 mM in their study. 

 

 Martinez and Rico (2004) found a Vmax of 19.4 µmol gDW-1 h-1 for ammonium for 

summer plants which suggests that over the range of concentrations tested here, uptake 
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saturation for ammonium may not have been reached. Martinez and Rico (2004) stated 

that saturation with either NO3
- or NH4

+ may be dependent on the nutritional history of 

the plants. Winter plants may have even lower saturation concentrations for ammonium 

because of higher thallus nutrient content. Morgan and Simpson (1981) found that 

despite faster ammonium uptake, nitrate supported higher growth rates. Nitrate is 

expected to be a better N source for the mariculture of P. palmata. Despite this, when 

ammonium is the only N source available, the algae will utilise this source at the 

concentrations experienced in the field. 
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6.3 Palmaria palmata can store nitrogen – for what periods 
can it do so? What internal levels of nitrogen are indicative of 
nitrogen depletion? 

 

Generally, uptake rates for nitrate, ammonium and phosphate are higher in 

opportunistic, filamentous and tubular or monostromatic algae with a high SA : V ratio, 

while long-lived, late-successional algae with parenchymatous-like thalli and a low SA : 

V ratio have lower uptake rates and correspondingly slower growth rates (Littler and 

Littler 1980; Wallentinus 1984; Lobban and Harrison 1996). Palmaria palmata has a 

thin flat thallus with a moderately high growth rate. Growth strategies are further 

enhanced for P. palmata by the capacity for storage of nitrogen (Martinez and Rico 

2002). 

 

Close to the salmon cages, nutrient interception by P. palmata is likely to be patchy 

depending on the proximity to the cages and location with respect to current patterns. 

Lack of exposure to nutrients for longer periods can be expected to favour algae that can 

store nutrients. These factors are particularly critical during the summer months when 

ambient nitrate levels are low. This section aims to determine how long stored nitrogen 

supports growth of the P. palmata and critical percentage nitrogen content. These 

values are to be compared with two macroalgae of contrasting morphologies 

Enteromorpha (Ulva) intestinalis and Polysiphonia lanosa.  

 

The assumption that Palmaria palmata can store nitrogen to the same extent when 

supplied as either ammonium or nitrate is equivocal. Knowledge of levels of nitrogen in 
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P. palmata that are reflective of nitrogen depletion is necessary for identification of 

nitrogen-limited plants in the field. 

 

Methods 

Experimental seaweeds were gathered from the rocky shore near Oban on 5 March 

2005.  Three species were selected primarily on the basis of differences in their 

morphologies.  The species chosen were the red foliose alga Palmaria palmata, the 

green tubular monostromatic green alga Enteromorpha (Ulva) intestinalis, and the red 

filamentous alga Polysiphonia lanosa. Enteromorpha intestinalis and Polysiphonia 

were found growing in the intertidal zone. Enteromorpha (Ulva) intestinalis was found 

growing in rock pools and Polysiphonia was growing as an epiphyte on Ascophyllum 

nodosum.  Palmaria palmata was an epiphyte attached to Laminaria hyperborea stipes 

in the sublittoral fringe.   

 

The algae were drip-dried in a colander and the wet weighed. Palmaria and 

Polysiphonia, and 20 g of Enteromorpha were placed into three 10-litre culture vessels.  

Each vessel contained 8 litres of filtered (1 µm) seawater with f/2 nutrients and was 

exposed to 100 µmol photon m-2 s-1 provided by two cool white Osram 58 watt 

(Lumilux 58W/840) fluorescent lights on a 16:8 hour light:dark cycle for 11 days. The 

seawater in all the buckets was aerated vigorously using small airstones in a room 

maintained at 11oC. After 11 days, the algae were weighed, samples reduced to original 

weights and excess algae frozen and stored for carbon and nitrogen analysis. The algae 

were returned to containers with filtered seawater but with nutrients at f/2 levels for 

phosphate, trace metals only and no nitrogenous nutrients. 
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The wet-weighing procedure was repeated every three to four days until the experiment 

was terminated 29 days later on 14th April.  E. intestinalis was reduced to 10 g on 14th 

March, to bring it in line with the other species.  At each weighing, the buckets were 

replenished with deionised water to the original level marked on the buckets, and algae 

were reduced to 10 g wet weight and subsampled for later analysis (< 0.5 g sampled 

once algae had stopped growing). 

 

The samples of macroalgae were washed carefully in distilled water and freeze-dried 

until constant weight. They were ground to a powder and stored in an air-tight 

desiccator in the dark until analysed. Total carbon and nitrogen content was determined 

with a Europa Scientific CHN analyser, using acetilamide as a standard, following the 

procedure described by Hedges & Stern (1984). 

 

Data Analysis 

Relative growth rates (g g-1d-1) of the three algae were calculated as described earlier. 

 

Results 

Growth rates for Palmaria and Enteromorpha peaked at 0.11 and 0.14 g g-1day-1 within 

the first week after nitrogenous nutrients were stopped (Figure 6.6, 0-4 days for E. 

intestinalis and 4-6 days for P. palmata). The change in growth rate for the 

Polysiphonia over this period was not as marked although this alga also appeared to 

peak at around this time (4-6 days). Algal growth decreased to a minimum for all three 

species at 12-15 days after deprivation of nutrients. 

 

There were small changes in the percentage of carbon for the three algae over the time 

course of the experiment (Figure 6.7), with a slight decrease for E. intestinalis and 
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Polysiphonia from 35.4 % and 34.2 % to 33.2 % and 29.1 % respectively. Palmaria 

palmata remained steady at 40-43 % after a high initial result (49.5%). 

 

Percentage nitrogen content started at a high for E. intestinalis, Polysiphonia and P. 

palmata of 4.5, 5.3 and 6.3% and finishes at lows of 0.8, 2.7 and 1.7% respectively 

(Figure 6.8). 

 

Carbon to nitrogen ratios of the three algae (mass) reflected the pattern for nitrogen 

content (Figure 6.9). All three had ratios of 6-8 initially, finishing on values of 43.8, 

25.5 and 10.8 for E. intestinalis, P. palmata and Polysiphonia respectively. 
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Figure 6.6   Mean relative growth rates of the three species of macroalga in nitrogen-
depleted seawater medium, initiated 16/3/05. Growth rates refer to period between 
sampling events. The arrow indicates when nitrogenous nutrients were stopped. 
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Figure 6.7 Carbon as a percentage of dry weight for the three species of alga over the 
term of the growth period (vertical bars indicate 95% CI). The arrow indicates when 
nitrogenous nutrients were stopped. 
 

0

2

4

6

8

05/03/05 10/03/05 15/03/05 20/03/05 25/03/05 30/03/05 04/04/05 09/04/05 14/04/05
Date

Pe
rc

en
ta

ge

E. intestinalis

P.palmata

P.lanosa

 

Figure 6.8 Nitrogen as a percentage of dry weight for the three species of alga with 
time over the term of the growth period (vertical bars indicate 95% CI). The arrow 
indicates when nitrogenous nutrients were stopped. 
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Figure 6.9 Carbon to nitrogen ratio (mass) for the three species of algae with time over 
the term of the growth period (vertical bars indicate 95% CI). Arrow indicates when 
nitrogenous nutrients were stopped. 
 

Discussion 
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Measured growth rates for individual species were quite variable. Growth rates were 

monitored using the wet weights of the algae and despite due care, some of the variation 

in calculated growth rates may be due to differing amounts of retained water between 

sampling. Palmaria palmata does not appear to be as prone to such variation as in the 

other two algae which may be due to this alga’s morphology. E. intestinalis has a 

tubular morphology which is likely to hold water and Polysiphonia is a semi rigid 

filamentous alga which retains water in its branches P. palmata is a flat alga which is 

easier to dry. 

 

Culture media for E. intestinalis were observed to take on a green tinge between the 14th 

and 20th of March suggesting that the alga may have initiated spore release. This may 

have impacted on overall growth rates of the alga although it coincides with the higher 

growth rates measured. 

 

Maximum growth rates for P. palmata and E. intestinalis are on a par with previous 

studies for these algae (e.g. Browne 2001, Nielsen and Sandjensen 1990). At the time of 

high growth rates, percentage nitrogen contents of the algae compare well with higher 

levels measured in other studies (e.g. Martinez and Rico 2002). The lowest percentage 

nitrogen was measured fifteen days after nutrient deprivation which also corresponded 

to lowest growth rates suggesting that these algae may have been nitrogen depleted at 

this stage. 

 

These findings concur with those of Demetropoulos and Langdon (2004) for P. mollis 

and Morgan and Simpson (1981) for Palmaria palmata. These studies found no 

significant difference between growth rates for the algae supplied with nutrients every 

day and those that are supplied every seven days. Hence, the alga can store sufficient 
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nitrogen for maximal growth over a seven day period. Nagler et al. (2003) had similar 

results for Gracilaria parvispora. G. parvispora grown in nitrogen enriched medium 

prior to deployment to a low nutrient ocean lagoon grew well for 14 days, but after 21 

days growth ceased due to depletion of stored nutrients. Nitrogen content of the thalli 

was 2.5-5% of dry weight before outplanting to the sea and decreased to 1 % as the 

nitrogen was mobilised to support growth.   

 

The initial nitrogen enriched thalli have C:N ratios comparable to general ratios for 

quoted for macroalgae (Atkinson and Smith 1983) of 10:1 and the Redfield C:N  ratio 

of 6.6 for phytoplankton. At maximal growth, the macroalgae in this study had similar 

C: N ratios but change relative to each other as starvation progresses. Percentage 

nitrogen and C:N ratio for E. intestinalis appear to be still declining at the close of the 

experiment suggesting they may still not be nitrogen limited at 29 days. Palmaria 

palmata and Polysiphonia however appear to have been nitrogen limited by 4/4/05 i.e. 

after 19 days. 

 

The variation in growth rates experienced for these algae limits the conclusions 

regarding comparison of growth rates and percent nitrogen between species. Growth 

rates of Polysiphonia appear low (although on a par with the RGR measured for 

Polysiphonia nigrescens of 0.070 g g-1day-1 by Nielsen and Sandjensen 1990) and not 

necessarily indicative of optimal growth. Under conditions of optimal growth, 

Polysiphonia may be expected to deplete nitrogen reserves earlier than demonstrated 

here, as it has a high SA:V ratio (surface area to volume). Palmaria palmata and E. 

intestinalis superficially have similar morphologies but E. intestinalis is commonly one 

cell in thickness and Palmaria palmata is at least 2-8 cells thick. The higher cell 

numbers may allow P. palmata to have better nitrogen reserves. However, this is not 



 200

necessarily reflected in the results here, with the two algae showing similar growth rates 

and rates of depletion of reserves. 

 

Ability to store nitrogen by Palmaria palmata for periods of 7 to 21 days in a nutrient 

poor environment means that P. palmata requires only intermittent exposure to nutrients 

at these time scales to survive and grow. This may have implications for culture of the 

alga in the vicinity of fish farms. The regularity and duration of exposure of algae to 

nutrients at varying distances from the farm will be dependent on the prevailing currents 

and fish feeding regimes around the farm. Algae with the capacity for nutrient storage 

may benefit from nutrients originating from the farm for greater distances. Tidal 

currents vary at time scales of 6 to 12 hours. Meteorologically driven changes to 

currents operate in conjunction with tides and operate at time scales of weeks, months 

and years. The sum of these factors and how they interact with daily variations in fish 

feeding and ammonium input will largely determine how far from the farm algae will be 

exposed to nutrients and the duration and timing of the exposure. Dilution and rate of 

uptake of the nutrients by other organisms such as phytoplankton and bacteria will also 

affect the concentration of the nutrients and should be factored into models to indicate 

temporal availability. 
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6.4 Is ammonium taken up evenly over the thallus of Palmaria 

palmata? Is there translocation of nitrogen to new tissue? 

 

Part of this thesis investigated the potential for using stable nitrogen isotope analysis of 

P. palmata in the vicinity of the fish farm cages to determine if farm-derived nitrogen is 

taken up by seaweeds and, if so, how far from the cages. To standardise the sampling of 

P. palmata, tips only of the plants were used for analysis (including tissue up to 0.75 cm 

from the apex). The sampling of the tips was also preferred because epiphytes tend to 

colonise older tissue towards the base. As we were sampling only the tips, it was 

desirable to know how representative of overall 15N levels in the plants this sampling 

represented, whether recent nutrient history was reflected in samples from the tips and 

for how long. 

 

As the plants grow from the apices, this is newer tissue, and is likely to consist 

principally of nitrogen taken up recently. At times of moderate to high growth this will 

be nitrogen incorporated over the previous one to two weeks based on growth rates 

determined in culture (Kakkonen 2004). If the supplied nitrogen varies in its isotopic 

ratio, then we may see variation in the isotopic ratio throught the thallus depending on 

the isotopic ratio of the supplied nitrogen at the time of growth.  

 

There are two naturally occurring forms of nitrogen. There is the common form of 

nitrogen which contains seven protons and seven neutrons and is referred to as nitrogen 

14 (14N), and a heavier form that contains an extra neutron called nitrogen 15 (15N). 
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Normally, the relative amount of  15N to 14N is determined relative to a standard and is 

described by the following: 

δ15Ν (‰) = ((Rsample/Rstandard)-1)  x 103 

where Rsample is the ratio of 15N to 14N of the sample and Rstandard is the ratio for a 

standard which for nitrogen is the ratio for atmospheric nitrogen. The accepted value for 

nitrogen isotope abundances in air is 0.0036765 (Junk and Svec 1958; Mariotti 1984).  

In this section, ammonium enriched with 15N with an abundance of almost 1.0 (0.98) 

was used. 

 

The aim of the section was to determine where in the P. palmata thallus ammonium is 

taken up. Algae with two different nutrient histories were used to see how this affected 

nutrient uptake. One week after exposure to the isotopically enriched ammonium, the 

algae were re-sampled to see if the enriched 15N could be detected in new tissue. The 

results will show how representative sampling from the tips gives of distribution of 15N 

in the thallus and movement of nitrogen within the thallus. 

 

Methods 

Palmaria palmata attached to Laminaria hyperborea stipes was gathered from Calbha 

Bay in north west Scotland (24/2/2005, see chapter 2 map).  The algae were transferred 

to Dunstaffnage Marine Laboratories where they were held in cool aerated seawater 

until used a few days later. Plants chosen for use in the experiment were clean and 

healthy and those with obvious associated epifauna (e.g., bryozoans) were rejected. 

The Palmaria palmata plants were rinsed with filtered (1 μm) seawater, padded dry 

with absorbent paper, weighed (10 g) and placed in 6 x 10-litre containers containing 5 

litres of filtered (1 µm) seawater.  Three of the containers had a full complement of f/2 



 203

nutrients (‘Enriched’ algae) and three containers had only trace metals, phosphate at f/2 

concentrations i.e. with. no nitrogenous based nutrients (‘Unenriched’ algae). 

 

The seawater in all buckets was aerated in a culture room maintained at 11oC with 

fluorescent light providing 100 µmol photon m-2s-1 at the level of the cultures with a 

16:8 hour light : dark cycle.   

 

After one week, the Palmaria palmata samples were again wet-weighed and reduced to 

12 g; the excess material was frozen for later analysis.  The samples were added to 2.4 

litre transparent plastic containers containing 1μm filtered seawater with 50 µM 

15NH4Cl (98 atom % 15N Sigma Aldrich, product No. 299251) and phosphate and trace 

metals at f/2 concentrations.  A further three containers containing the same medium but 

no algae were run as controls to check for dissipation of ammonium over the time of the 

experiment.  Seawater and nutrient media in all treatments had moderate aeration. 

Seawater samples (50 ml) were taken at 0, 15 minutes, 1, 2, 4 and 6 hours after addition 

of the P. palmata to determine the amount of 15NH4Cl taken up and hence uptake rates.  

Seawater samples were also taken from controls, before and after the samples were 

exposed to media containing 15NH4Cl.  Samples (50 ml) were taken using a syringe and 

were passed through a 0.45 μM filter.  Seawater samples were injected into acid washed 

plastic bottles that had been rinsed using 10 ml seawater from the container being 

sampled.  Seawater samples were then stored in a freezer for later analysis by 

autoanalyser. Ammonium, ortho-phosphate, nitrate and nitrite in the seawater samples 

were measured on a Lachat Instruments autoanalyser (QuickChem 8000) following the 

method of Grasshoff (Grasshoff 1976).  Analysis of the seawater samples was carried 

out in triplicate. In this instance, where high enrichment levels of 15N were used, the 

results were expressed most conveniently in terms of atom percent (atom %). 
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By definition: 

atom % = fractional abundance x 100 

ppm = fractional abundance x 106 

 

 

Figure 6.10 Diagram illustrating positions of different tissue types used for heavy 
isotope analysis of Palmaria palmata. Frond tissue samples were collected from the 
apical tip, mid-thallus, and older tissue as indicated. The illustrated plant is 
approximately 15 cm high. Picture source: www.cryptogamicbotany.com/ 
images/oa_rhodo/Pal. 
 

At the end of six hours, the samples were wet-weighed and reduced to 10 g, with the 

excess (2 g) frozen for later analysis.  The 10 g samples of Palmaria palmata were 

returned to the 6 x 10-litre containers each containing 5 l of filtered seawater with a full 

complement of f/2 nutrients (i.e. with nitrogenous nutrients). 

 

One week later, final wet-weights were recorded and sub-sampled for analysis. All plant 

samples were rinsed in deionised water and duplicate 0.085 g wet-weight samples of the 

three different tissue types (apex, mid and base; see Figure 6.l0) were cut from P. 

palmata before exposure, directly after exposure and one week after the 6 hour exposure 

Apex 

Mid 

Base 



 205

to 15NH4Cl from each of the three replicates for the Enriched and Unenriched treatments 

and placed inside preweighed tin capsules. Samples were left in a drying oven for 48 h 

at 60oC. On removal from the drying oven, the samples were cooled and weighed. Trays 

of samples were kept in an airtight jar containing a dessicant until analysed for nitrogen 

isotopes and total carbon and nitrogen with a ANCA-SL/GSL by PDZ Europa 20-20 

mass spectrometer. 

 

Relative growth rates (RGR: g g-1day-1) of P. palmata tissues were calculated as 

described previously, for the pre-conditioning treatment (2-9 March) and after the 

addition of 15NH4Cl (9-14 March 2005). 

 

Where data met with the pre-conditions of normality, homogeneity of variance and 

independence, the difference between treatments was analysed by using Analysis of 

Variance (ANOVA) statistical analysis which was conducted using Minitab 14 

statistical analysis programme. 

 

Results 

Growth rates of P. palmata are depicted in Figure 6.11. The results show that there was 

a significant difference between the growth rates of ‘Enriched’ and the ‘Unenriched’ 

algae in the preconditioning period. The growth of the algae with full f/2 nutrients was 

lower in the preconditioning period than after. Growth rates under full f/2 nutrients were 

comparable with previous results (i.e. RGRs of 0.05 to 0.15 g g-1d-1). The difference 

between the two growth periods may relate to an adaptation phase when the algae were 

first cultured under experimental conditions or the alga may have been at higher 

densities in the container for the earlier growth period limiting light availability. 
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Figure 6.11 Mean relative growth rates calculated using wet-weights of Palmaria 
palmata samples after pre-conditioning treatment (2-9 March), and post exposure (9-14 
March) to 15NH4Cl medium (vertical bars indicate 95% CI). 
 

Mass spectrometer analysis 

The bar graphs below (Figures 6.12) show the results for analysis of the heavy 15N 

isotope in the three different tissue types for Enriched and Unenriched treatments for 

samples taken before exposure, directly after exposure and one week after exposure to 

15NH4Cl. A two-way ANOVA was conducted for differences in the amounts of  15N, 

percentage nitrogen and carbon for tissue types (base, mid and apex) and between  

Enriched and Unenriched plants for each of the time periods, before, immediately after 

and one week after exposure to 15NH4Cl (see Table 6.2). 

 

Before exposure 

Before exposure to 15NH4Cl, the mean value for At%15N of the plant tissues was 0.38% 

with no significant difference between tissue types. For percentage nitrogen there was a 

highly significant difference between Enriched and Unenriched tissues, with means of 

6.4 % and 3.8 % of dry weight respectively. There was no significant difference for 

percentage carbon and Carbon: Nitrogen ratios. The results for Carbon: Nitrogen ratios 

reflect percentage nitrogen results across all time periods. 
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Immediatley after exposure 

Immediatley after six hours exposure to 15NH4Cl, there were highly significant 

differences (log transformation of data) between At%15N for tissue type and Enriched 

versus Unenriched plants. Apex and Mid parts of the plants had greater abundances than 

the basal parts (4.8, 3.4, 1.6 At%15N, respectively). Unenriched plants had greater levels 

than Enriched (4.1, 2.5 At%15N). 

 

Percentage nitrogen remained significantly higher in Enriched plants than Unenriched 

(6.3, 4.1%). Percentage carbon showed a similar trend, being significantly higher in 

Enriched plants than Unenriched (44.6, 40.3%). 

 

One week after exposure 

For 15N content, the apex and mid sections had greater abundances for Unenriched (2.5, 

2.2%) versus Enriched (1.7, 1.7%) , but there was little difference between the two lots 

of plants for the base (1.2, 1.3%). For percent nitrogen, the apex had higher levels than 

mid or base (7.9, 5.7, 5.1 %) and Enriched remained significantly higher than 

Unenriched  (7.1, 5.4%). There were significant differences for percentage carbon 

between tissue types and conditioning of plants. The base had higher percent carbon 

than the apex or mid (Apex: 36.0, Mid: 37.5, Base: 43.6) and Enriched plants had 

higher levels than Unenriched (42.1, 36.0%). 
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Table 6.2 ANOVA results for comparisons between tissue types, Unenriched and 
Enriched treatments and before exposure to 15NH4Cl, directly after exposure and one 
week later; Means, F ratios and significance level (p). 
 Mean values: 

Apex /Mid / 
Base 

F p En / 
Unenriched 

F p Inter-
action 

F p 

BEFORE          
Atom % 0.38  ns 0.38     ns 
N % 5.6/5.0/4.8  ns 6.4/3.8 57.8 <.001  4.3 .04 
C % 40.2/41.9/44.8  ns 42.3/42.4  ns   ns 
AFTER          
Atom % 4.9/3.3/1.6 66.28 <.001 2.4/4.1 34.7 <.001   ns 
N % 5.8/4.8/5.0 2.2 ns 6.3/4.1 25.6 <.001   ns 
C % 42.9/40.4/43.9 2.4 Ns 40.3/44.6 10.1 <.01   ns 
ONE WEEK         
Atom % 2.1/2.0/1.3 125.9 <.001 1.5/2.0 95.6 <.001  32.5 <.001 
N % 7.9/5.7/5.2 15.48 <.001 7.1/5.4 18.25 <.001   ns 
C % 36.0/37.5/43.6 5.06 .026 42.1/36.0 8.51 .013   ns 
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Figure 6.12 15N levels in conditioned plants before, directly after and one week after 
exposure to 15NH4

+ for the three tissue types (vertical bars indicate 95% CI). 
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Figure 6.13 Percentage nitrogen levels in conditioned plants before, directly after and 
one week after exposure to 15NH4

+ for the three distinguished tissue types (vertical bars 
indicate 95% CI). 
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Figure 6.14 Percentage carbon levels in conditioned plants before, directly after and 
one week after exposure to 15NH4

+ for the three distinct tissue types (vertical bars 
indicate 95% CI). 
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Figure 6.15  Carbon to nitrogen ratios in conditioned plants before, directly after and 
one week after exposure to 15NH4Cl for the three distinct tissue types (vertical bars 
indicate 95% CI). 
 

Ammonium, nitrate, nitrite and phosphate concentrations for the duration of the uptake 

experiment are depicted in Figure 6.16. They show that uptake of ammonium by the 

Enriched algae was slower than by the Unenriched algae; this is also reflected in 

calculated uptake rates in Figure 6.17. Figure 6.17 also suggests that the principal 

reason for the difference may be an initial surge uptake by the Unenriched algae. Note 

that while there was a large apparent difference in uptake between the two different 

preconditioned algae, a t-test at 15 min did not give a significant difference, due to the 

high variability of the uptake by the Unenriched algae. 
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The pattern for nitrate is similar to, although not as marked as that for ammonium; i.e.  

uptake of ammonium by the Enriched algae is slower than by the Unenriched algae. The 

nitrite and phosphate concentrations show changes at approximately two hours, 

corresponding to when the ammonium and nitrate were completely absorbed by the 

algae. The bigger difference was for the phosphate with the solutions for the Enriched 

algae containing less phosphate at the end of the experiment. 
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Figure 6.16 a) Changes in concentration over time of ammonium in the culture media 
(vertical bars indicate 95% CI). 
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Figure 6.16 b) Changes in concentration over time of nitrate in the culture media 
(vertical bars indicate 95% CI). 
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Figure 6.16 c) Changes in concentration over time of nitrite in the culture media 
(vertical bars indicate 95% CI). 
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Figure 6.16 d) Changes in concentration over time of phosphate in the culture media 
(vertical bars indicate 95% CI). 

0

2

4

6

8

10

0 1 2 3 4 5 6
TIME (hours)

Up
ta

ke
 ra

te
( μ

m
ol

 d
ry

 w
t g

 h
r-1

) Enriched

Unenriched

 

Figure 6.17 Variation in uptake rates with time of ammonium in the culture solutions 
(vertical bars indicate 95% CI). 
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Discussion 

Nitrogen isotope abundances in air are used as the standard for 15N and the accepted 

value is 0.0036765 (Junk and Svec 1958; Mariotti 1984) or 0.37 % which compares 

well with the levels found in the ‘before’ P. palmata of 0.38 % (Figure 6.12). 

Immediately after exposure in both pre-conditioning treatments, mid and upper parts of 

the plants had more than double the levels of those at the base. Within Unenriched 

plants there was more than three times as much in the apices as in the bases. This shows 

that there were large differences in uptake rates of ammonium across the thallus. There 

were also significant differences between the differently conditioned plants. 

 

At an RGR of 0.1 g g-1day-1 the Palmaria palmata fronds may be expected to increase 

in length by 1.5 cm over a period of a week (Kakkonen 2004). This indicates that the 

majority of sampled apical tissue for this experiment is new tissue. Despite this, for the 

one-week post-conditioned algae, there was still a high Atom% 15N in the apical tissue. 

This may have arisen by translocation of nitrogen within the tissue. Alternatively the 

cells storing the nitrogen may be expanding with the growing tip, taking the nitrogen 

with them. Although the apparent translocation to the tips, there is still a large 

difference in the Atom%15N between the base and the upper parts of the thallus. 

 

Evidence of long-distance transport in red algae includes the use of the tracer in 

Delesseria sanguinea and the seasonal growth of perennial algae where the gain in 

biomass in growing organs exceeds the local net carbon gain from photosynthesis minus 

respiration. Over short distances (less than, or equal to a few millimetres) there are well 

authenticated examples of symplasmic transport in red algae related to reproduction in 

the development of the carposporophyte and in red algal parasitic or other red algae 

(Raven 2003). 
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Under nitrogen limitation, intracellular nitrogen pools may be low and subsequent 

uptake rates may be greater due to a ‘pool filling phase’ that occurs in nitrogen limited 

algae (Lobban and Harrison 1996). The extent to which this occurs depends on factors 

such as the age of the tissue resulting in variation within the thallus. This experiment 

indicates that for samples taken that include all three tissue types (base, mid, apex), 

calculation of uptake rates or nitrogen contents may be influenced by the proportions of 

the different tissue types within the samples. Either all three tissue types and their 

proportions should be considered when calculating uptake rates or only one should be 

sampled consistently to obtain a true reflection of uptake rates. 

 

Very high levels of nitrogen were recorded in the P. palmata tips with a maximum of 

9.3% in the Enriched tips one week after exposure to the ammonium. This compares 

with values of  5% by Martinez and Rico (2002), 4% by Hagen Rødde et al. (2004) and 

5.83% by Demetropoulos and Langdon (2004) for Palmaria mollis plant tissue. Using a 

standard conversion factor of 6.25 to estimate protein levels, this indicates protein levels 

may be as high as 58%. The elevated levels may be a reflection of the winter adapted 

algae used for the samples and the combination of ammonium and nitrate used for 

nutrient supply. The tips also may have tissues that are likely to have larger levels of 

free space for luxury nutrient uptake. 
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CONCLUSIONS 

• Concentrations of ammonium greater than 100 - 500 μM in seawater with other 

nutrients in abundance, renewed weekly, at stocking densities of 1 g 10–litre-1 

has a deleterious effect on the growth rate of P. palmata. 

 

• Levels of ammonium of 3520 µM (nitrogen at f/1 rates as per Guillard and 

Rhyther 1962) in seawater with other nutrients in abundance, renewed weekly, 

immediately slows growth for P. palmata at stocking densities of 1 g 10–litre-1. 

 

• P. palmata is able to sustain the same level of growth when supplied with high 

concentrations of nitrate or with low concentrations of ammonium. 

 

• P. palmata is able to take up both ammonium and nitrate simultaneously. 

 

•  Ammonium uptake does not inhibit nitrate uptake. 

 

• The uptake rate of nitrate may be saturated at 10 – 20 μM whereas ammonium 

was not. 

 

• Palmaria palmata with high initial nitrogen reserves and under optimal growth 

conditions can maintain growth for at least 15 days in a low nitrogen 

environment (other nutrients in excess). 

 

• Levels of nitrogen percentage of dry weight of less than 2% or C:N ratios of 

greater than 25 are reflective of nitrogen starved P. palmata plants. 
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• Uptake of 15N is higher in nitrogen starved plants. 

 

• There are differences in uptake between apical, mid frond and basal tissue of P. 

palmata plants, the extent of difference dependent on the nutrient history of the 

plants and the time since exposure. 

 

• There is transport of 15N to newly growing apical tissue. 
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CHAPTER 7 

VARIATION IN STABLE ISOTOPE ABUNDANCES 

IN MACROCALGAE GROWING IN THE 

VICINITY OF FISH FARMS. 
 
Introduction 

One of the premises of this study is that seaweed growth will be enhanced in close 

proximity to salmon farms and the seaweeds utilise will the excess nutrients. The 

nitrogen isotope composition of organisms can be used to determine how nitrogen is 

cycled in ecosystems. It can also be used as a tracer where there is a large difference in 

isotope composition between source and end nitrogen. 

 

The aims of this section of the project were to answer the following questions through 

the use of variations in nitrogen isotopic composition: 

1/ Is the nitrogen taken up by plants in the vicinity of the cages derived from 

salmon farm nutrients? 

2/ How far from the salmon farm are the seaweeds taking up salmon farm-

derived nitrogen? 

3/ What proportion of nitrogen taken up is salmon farm-derived? 

4/ What is the isotopic signature of the farm-derived ammonium? 
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Background information 

The mass spectrometer used for this work analysed for carbon and nitrogen isotopes. 

Carbon isotope results have been collected and assessed incidentally as part of this 

project. The carbon isotope results can also assist in interpretation of environmental 

processes. Of all the farm-derived nutrients, the nitrogen budget is of most interest to 

this project, so I have concentrated principally on nitrogen isotope ratios.  

 

The following background information for nitrogen isotopes in marine biological 

systems has been sourced largely from Owens (1987). Other review articles include 

those by Peterson and Fry (1987),  Handley and Raven (1992), Raven (1992), Michener 

and Schell (1994), Peterson  (1999), and Robinson (2001) and Bedard-Haughn et al. 

(2003). 

 

There are two naturally occurring forms of nitrogen. There is the common form of 

nitrogen which contains seven protons and seven neutrons and is referred to as nitrogen 

14 (14N), and a heavier form that contains an extra neutron called nitrogen 15 (15N). The 

relative amount of  15N to 14N is determined relative to a standard and is described by 

the following: 

δ15Ν (‰) = ((Rsample/Rstandard)-1)  x 103 

 

where Rsample is the ratio of 15N to 14N of the sample and Rstandard is the ratio for a 

standard which for nitrogen is the ratio for atmospheric  nitrogen. 

 

Isotope fractionation is the basis for the natural variation in 15N in biological materials 

and the use of these variations as a tracer. There are two types of isotope effect leading 

to fractionation:  
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a) physical isotope effects and 

b) chemical isotope effects. 

Physical fractionation is the result of the lighter isotope moving more rapidly than the 

heavier isotope e.g. during diffusion. Chemical fractionation occurs because a chemical 

bond, which involves a heavy isotope, has a lower vibrational frequency and is stronger 

than the equivalent bond involving a light isotope. 

 

The most important fractionation effects involved in the biological nitrogen cycle are 

those resulting from irreversible chemical reactions; these are termed kinetic isotope 

effects. For a given reaction, the degree of depletion in the instantaneous product is 

governed by the isotopic fractionation factor (α) which is a fundamental property of the 

reaction and is affected by environmental conditions, for example, temperature. In a 

closed system, the accumulated product becomes gradually less depleted in 15N, so that 

when all of the substrate has reacted, the δ15N of the product is identical to the δ15N of 

the substrate at the start of the reaction. In the majority of kinetic fractionation effects 

the product becomes more depleted in 15N relative to the substrate. 

 

An important isotope fractionation effect is that associated with dinitrogen fixation. 

Hoering and Ford (1960) showed that the magnitude of the effect was small and in the 

majority of cases was indistinguishable within the limits of detection. The consequence 

of the small fractionation effect is that organic nitrogen derived from atmospheric 

dintrogen fixation should have δ15N values close to atmospheric values. In contrast the 

largest fractionation effects are those associated with denitrification. This is considered 

to be due to the involvement in the reaction of the strong N-O bonds (Owens 1987). 
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One example of environmental effects on fractionation is the case of temperature. 

Temperature affects the rate of reaction which then affects the fractionation effect. 

Another example is the effect of light, Wada and Hattori (1978) found a strong 

relationship between growth rate and the isotope fractionation in light-limited cultures. 

There was also an increase in fractionation with increasing NO3
- concentration. A 

similar relationship has been observed for NH4
+ (Wada 1980). 

 

The study by Wada and Hattori (1978) clearly established the relationship of the 15N 

content of phytoplankton with its inorganic nitrogen supply and indicated that 

significant isotope fractionation can be expected. Furthermore, fractionation theory 

predicts that in nitrogen limited conditions no enrichment or depletion of the 

phytoplankton relative to the inorganic nitrogen supply will occur. Greatest 

fractionation occurs under non-nitrogen-limited conditions. 

 

The range of δ15N values found covers almost 100 δ units from -49‰ to +49‰. 

Generally however values fall within the fairly narrow range of -5‰ to +20‰. The 

average δ15N values for each environment increases in the following order: atmosphere 

< terrestrial < freshwater < estuarine < marine (Owens 1987).  

 

One of the most depleted values (-49‰) found so far has been in epibenthic algae in the 

Antarctic and was attributed to substantial fractionation associated with extremely slow 

growth rates in the low light and high nitrate environment. A highly enriched value 

(+30.7‰) also found in the Antarctic was from algal felt collected close to a penguin 

rookery. Wada et al. (1981) considered that this demonstrated an avian source of 

excreted ammonium, accompanied by a large fractionation effect during the 

volatilization of the ammonium as ammonia. Industrially-produced fertilizers have an 
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isotopic composition close to that of the atmosphere, reflecting their origin. Naturally 

occurring inorganic fertilizers have widely differing 15N contents. 

 

In food chain studies, δ15N and the relationship between an organism and its diet has 

been used to track trophic levels. A review of a number of studies by Owens (1987) 

suggested that the average difference between δ15N organism and δ15N diet is 2.6‰ ± 

2.1 (s.d.) which supports the earlier claim of Minagawa and Wada (1984) for a general 

enrichment between trophic levels of approximately 3‰. This relationship can be taken 

a bit further by considering the 15N content of diet, individual tissues and/or excretory 

products. Some land based studies indicate that excretory products are consistently 

depleted in 15N relative to diet, the average difference being -5.88‰ (mostly terrestrial 

invertebrates and mammals, Owens 1987). Because isotope mass balance must be 

maintained, the relationship between diet, tissue and excreted products can be 

represented in the form of a mass balance equation: 

 

δ15N diet = X.δ15N tissue + Y.δ15N faeces + (1-[x + y]) δ15N excreted metabolite 

 

Where x & y are the fractions of the isotope incorporated into tissue and faeces 

respectively. It is likely that growth efficiency and assimilation efficiency account for 

the variability between the 15N content of an organism and its diet. 

 

The use of natural variations in 15N as an indicator of the source of the nitrogen is based 

on three assumptions:  

• materials of different origins or composition have detectably different 15N 

contents; 

• 15N content of a particular material remains unique and 
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• the 15N content remains unchanged or, if changes occur, the degree and 

direction (depletion or enrichment) of the change is known. 

In reality, there is often overlap between different types of samples and their origins and 

the isotopic composition of a material may change through isotopic fractionation and 

the magnitude of the change may be variable. Despite this, natural variations in 15N 

have been used to help determine the sources and origins of a variety of materials. For 

example, two source mixing models have been used by Grey et al. (2004) and Savage 

and Elmgren (2004). Grey  et al. (2004) used a mixing model to estimate fish 

contributions to food webs using carbon and nitrogen isotopes at a trout farm in a 

freshwater lake in Esthwaite Water, UK, where marine feeds were being used. Percent 

contributions to the diets of zooplankton were estimated. Use of the model was 

facilitated by the large difference in stable isotope abundances between freshwater and 

marine entities. 

 

For Savage and Elmgren (2004), percentage sewage contribution to total algal N uptake 

in algae near a sewage outfall was estimated before and after changes to sewage 

treatment which resulted in enhanced nitrogen removal. In 1989 this was estimated to 

be 40% and in 1999:12%. Similarly, temporal variation in individual plants estimate 

that the percentage sewage N contribution to algae within 1 km from the outfall 

declined from 40% in the mid-1990s to 20% in 2002. Nutrient budget calculations 

showed that F. vesiculosus is not an effective sink for N, assimilating only 3% of total 

annual N loads entering the bay. 

 

In animal or sewage waste, nitrogen is excreted mainly in the form of ammonia and 

urea. Urea, when hydrolysed, produces a temporary rise in pH. The more basic 

conditions favour conversion to ammonia, which is easily lost by volatization to the 
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atmosphere. Fractionation during this process results in the ammonia, which is lost from 

the system, being depleted in 15N. The remaining ammonium, now correspondingly 

enriched in 15N, is subsequently converted to 15N-enriched nitrate, which is more readily 

leached and dispersed by water (Heaton 1986; Costanzo et al. 2001). Although this is 

unlikley be an important factor in the ocean as it is relatively well buffered (Raven pers 

com). 

 

Nitrogen isotope natural abundances have been used to determine the extent of effluent 

plumes from a variety of waste output producers ranging from sewage to industrial to 

aquaculture operations. In the marine environment, stable isotopes (primarily nitrogen) 

have been used to identify sewage effluent in marine ecosystems in America  (Cabana 

and Rasmussen 1996; Kwak and Zedler 1997; Tucker et al. 1999), Australia (Costanzo 

et al. 2001; Gartner et al. 2002; Costanzo et al. 2003; Gaston and Suthers 2004; 

Carseldine and Tibbetts 2005), Denmark (Savage and Elmgren 2004; Savage 2005), 

Portugal (Machas et al. 2003), New Zealand (Rogers 2003), Indonesia (Heikoop et al. 

2000; Risk and Erdmann 2000; Marion et al. 2005) and the United Kingdom (Thornton 

and McManus 1994; Waldron et al. 2001). In South Africa, levels of 15N in Gracilaria 

gracilis were used to confirm nitrogen was sourced from a fish waste factory (Anderson 

et al. 1999). Stable isotopes have been used to track fish farm wastes in the 

Mediterranean, (Pantoja et al. 2002; Holmer et al. 2004; Vizzini and Mazzola 2004; 

Vizzini et al. 2005), in Australia (Ye et al. 1991; McGhie et al. 2000) and  Denmark 

(Christensen et al. 2000) and for  shrimp farms in Australia (Jones et al. 2001; Costanzo 

et al. 2005) and Thailand (Yokoyama et al. 2002). 

 

Stable isotope signatures may be tracked in sediments, particulate matter or organisms 

such as macrophytes, fish and invertebrates depending on the waste component of 
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interest. Fish feed and faeces can be tracked directly in sediments and particulate matter 

or indirectly as prey items for fish and invertebrates. Soluble nitrogenous-based 

compounds can be monitored either indirectly through uptake by seagrasses or 

macroalgae or directly through extraction from the water column. Extraction from the 

water column is not a straightforward procedure, however, and concentrations are very 

variable. Monitoring through macrophytes has the advantage that they can integrate 

over extended periods of time. Owens (1987) highlighted the lack of determinations of 

dissolved pools conducted in conjunction with ecological studies. Recent 

methodological improvements to extraction of  soluble nitrogenous compounds, such as 

ammonium (Johnston et al. 2003), should make this more practicable. 

 

There are two stable isotopes of carbon, these are 13C and 12C. Determination of δ13C is 

calculated in a similar manner to δ15N and abundances are measured relative to the PDB 

standard (carbonate from the Cretaceous Pee-Dee formation). Organic matter in marine 

macroalgae has δ13C values ranging from -3 to -35%. Seaweeds with very negative δ13C 

(lower than -30‰) are mainly subtidal red algae; those with enriched δ13C values 

(higher than -10‰) are mainly green macroalgae and seagrasses, with some red and 

brown macroalgae. Organisms with low δ13C values rely on CO2 diffusion for their 

carbon source while those more positive than -10 ‰ must involve HCO3
- (Raven et al. 

2002). The capacity to use HCO3
- has been demonstrated for P. palmata (Colman and 

Cook 1985; Cook and Colman 1987; Maberly 1990; Maberly et al. 1992; Kubler and 

Raven 1994; Kubler and Raven 1995; Kubler and Raven 1996a). Light and water 

movement have been shown to affect fractionation of 13C. Under low light there is 

greater fractionation resulting in lower δ13C values (Kubler and Raven 1994; Kubler and 

Raven 1995; Kubler and Raven 1996b; Kubler and Raven 1996a). Higher water 
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movement lowers the diffusion boundary layer (Maberly et al. 1992; France and 

Holmquist 1997). 

 

To determine the potential of using δ15Ν to trace farm-derived nitrogen an 

understanding of the variation in background abundances at the sites was required 

necessitating investigations into seasonal and geographic variation. The following 

sections cover: 

• Seasonal variation 

• Geographic variation 

• Variation for cultured seaweeds (Laminaria saccharina and Palmaria 

palmata) 

• Gradient in δ15Ν away from a farm 

• Mass balance for nitrogen isotope abundances for cultured salmon. 
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7.1 Seasonal variation of nitrogen isotope abundances in 
Palmaria palmata. 

The principal aim of this section was to determine the seasonality, if any, of heavy 

nitrogen isotope content of wild Palmaria palmata in the vicinity of Loch Duart fish 

farm sites. This information is valuable for elucidating patterns of the natural 

abundances of δ15Ν found in seaweed when used for purposes such as tracer analysis 

and food web studies. Studies on seasonal variation of the stable isotopes of carbon and 

nitrogen in macroalgae are rare. They include studies on variation in nitrogen and 

carbon isotopes of epiphytes on seagrasses in a western Mediterranean lagoon by 

Vizzini and Mazzola (2003), seasonal variation in δ15N of Codium isthmocladum and 

Caulerpa brachypus var. parvifolia on coral reefs of Florida by Lapointe et al. (2005) 

and in macrophytes in estuaries in Massachusetts by Cole et al. (2005) and carbon 

isotopes in two species of intertidal brown algae in eastern Scotland by Brenchley et al. 

(1997). 

 

Vizzini and Mazzola (2003) found that, for algae associated with seagrass beds in the 

Mediterranean, δ13C of the epiphytes showed the most enriched values and exhibited 

slight seasonal differences from -14.2 ± 0.6 ‰ in summer to -15.3 ± 0.8 ‰ (± s.d.)  in 

winter.  In contrast, Chaetomorpha linum exhibited a seasonal shift in δ13C values of 4.8 

‰ from -19.0 ± 0.5 ‰ in summer to -14.2 ‰ in winter. Throughout the year 

Cladophora sp. (δ15N = 0.7 ‰) and epiphytes (δ15N = 0.9 ‰) showed fairly constant 

δ15N values. Lepointe et al. (2005) found little seasonal change for the algae in Florida 

for δ15N as did Cole et al. (2005) in Massachusetts estuaries. Cole et al. (2005) thought 

this may be due to low variation in available nitrogenous compounds in the water 

throughout the year. Greater seasonal differences may be found where there was a more 
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marked difference in concentration of available nutrients seasonally. For Brenchley et 

al. (1997) in a study on two brown algal intertidal species in eastern Scotland, the stable 

carbon-isotope ratio δ13C did not differ between different tissue types in Fucus serratus, 

but values did vary seasonally, being less negative in the summer than in the winter: -

13.5 ‰, compared to -18 ‰. The receptacle tissue of Himanthalia elongata also 

displayed a distinct seasonal variation in δ13C values: -12 ‰ in summer and -16 ‰, in 

winter, whilst the δ13C of the vegetative button did not vary seasonally. 

 

A number of studies have been conducted on variation in δ15N and δ13C spatially and 

temporally for seagrass species. Anderson and Fourqurean  (2003) found for Thalassia 

testudinum in the Florida Keys that both δ13C and δ15N values displayed seasonal 

enrichment-depletion patterns, with maximum enrichment occurring during the summer 

to early autumn. Enrichment in summer was thought to be caused by denitrification. 

Denitrification results in the loss of isotopically light 14N, which enriches the remaining 

DIN pool with 15N. 

 

Methods 

Three sites were selected at Calbha and were a subset of stations used for a concurrent 

study investigating the seasonality and variation in nitrogen content of P. palmata with 

distance from salmon cages (Cook et al. in prep.). In 2004-2005 there were three 

salmon cage groups located at Calbha (see Figure 7.1). Of the possible sample sites, two 

were chosen: ‘Channel’ and ‘Point’ were sited at maximal distances from salmon cages, 

minimising the influence of salmon farm-derived nutrients. A third site, ‘Farm’ was 

chosen because it was close to a set of salmon cages (‘E’, see Figure 7.1). The sample 

sites were sampled bimonthly for P. palmata beginning in May 2004 and finishing in 
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June 2005. A later sampling session planned for August 2005 was abandoned due to 

inclement weather. 

 

In 2005 cultured fish at Calbha were second year fish of harvestable size, and biomass 

was at a maximum for the lease (see Figure 7.2). At operational peaks in 2004-2005, the 

cage groups each held three to four hundred tonnes of Atlantic Salmon (Salmo salar) 

and 70 to 90 tonnes of feed were put into each of the cage groups each month (Figure 

7.2). In July 2004, harvesting of fish began for cage group ‘E’, and by February 2005 

the cage group was empty of fish. Cage group C was emptied over a similar period to 

‘E’ and ‘A’ was harvested approximately three months later. 

 

On moderate to high wave-exposed rocky shores in the vicinity of Loch Duart sites, P. 

palmata is common on L. hyperborea stipes in the upper subtidal and in the lower 

intertidal on adjacent rocky reefs. To standardize sampling, P. palmata was sampled 

only from L. hyperborea stipes, during spring low tides. At each site, P. palmata was 

sampled from three randomly selected sub-sites each at least 10 m apart. At least five 

plants were collected at each sub-site. These were placed in plastic bags and kept at 4oC 

until processing on return to the laboratory. From each sample of plants, tips of fronds 

(approximately 3 cm) from at least three plants were freeze dried. Only tips were used 

in order to minimise within plant variation because they do not have epiphytes that are 

often found, seasonally, closer to the basal parts of the fronds. Once freeze dried, 

samples were kept in the dark in a desiccator until analysed. 

 

A PDZ Europa ANCA-SL/GSL 20-20 mass spectrometer was used to analyse samples. 

For optimal results when determining δ15Ν and δ13C, samples should contain 

approximately 100 mg of N or C. Where sample amounts fell outside acceptable ranges 



 230

for analysis of δ15Ν or δ13C, samples were re-run with adjusted weights. Mass 

spectrometer results also enabled calculation of total carbon and nitrogen as a 

percentage of dry weight. 

 

Statistics 
Analysis of variance was used for between-sample comparisons. Data were checked for 

normality and homogeneity of variance (Bartlett’s test). Post hoc tests were conducted 

using Tukey tests and all error bars presented on graphs are standard error. Statistics 

packages used were JMP IN (SAS Inst Inc) and Minitab. 

 

 

Figure 7.1 Palmaria palmata sample sites and salmon cage groups at Calbha Bay 2004-
2005 ( ). 
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Figure 7.2 Feed input (bar) and biomass (line) of fish for each of the three cage groups 
(C, D & E) at Calbha, 2004-2005. 

 

Results 

For the three sites monitored, mean δ15Ν values varied from 4 to 8.5 ‰ (Figure 7.3).  

The Channel site was consistently close to 8 ‰ for all sampling times except for the 

low February sample (4.1 ‰). The Point site was similar to the Channel site but lower 

by 1-2 ‰ for most samples. δ15Ν for the Farm site plants decreased steadily for the 
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samples taken from July 2004 to February 2006 after which it increased to 8‰ in April 

before again decreasing. The initial decrease in values for the farm site closely follows 

the decrease in added feed to the adjacent cage group ‘E’. Feed input decreased from a 

maximum in July 2005 until the finish of feeding with the finish in harvesting of these 

fish in January 2005 (Figure 7.2). There is no significant difference between sites for 

February (4-5‰) nor for the April 2005 (8‰) sampling sessions. 

 

δ13C values were at their lowest values at -25‰ for the winter samples (Figure 7.4) 

rising to a maximum of close to -20‰ for the spring and summer samples. At the 

beginning of sampling for δ13C in July 2004 when feed was being added to the cages at 

the Farm site, δ13C was at a maximum for this site and greater than the two other sites at  

-18.2 ‰ (t-test: < 0.05). 

 

Percentage nitrogen (Figure 7.5) was similar across all sites with high levels from 

autumn to spring and a maximum of 7.8% with a low in early summer of 3.6%. 

Percentage carbon (Figure 7.6) peaks in the middle of winter at close to 50% and is at a 

minimum in late Spring early summer at around 40%. 
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Figure 7.3 Change in δ15N with time for Palmaria palmata frond tips at the three 
sample sites, Calbha Bay 2004-2005 (vertical bars indicate 95% CI). 
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Figure 7.4 Change in δ13C over time for Palmaria palmata frond tips sites at the three 
sample sites, Calbha Bay 2004-2005 (vertical bars indicate 95% CI). Note that δ13C was 
not determined for samples collected in May 2004. 
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Figure 7.5 Change in nitrogen as percentage of dry weight in Palmaria palmata frond 
tips with time for the three P. palmata samples sites at Calbha Bay 2004-2005 (vertical 
bars indicate 95% CI). 
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Figure 7.6 Change in carbon as percentage of dry weight in Palmaria palmata frond 
tips at the three samples sites, Calbha Bay 2004-2005 (vertical bars indicate 95% CI). 
 

Discussion 

 The nitrogen stable isotope values of 4 to 9 ‰ fall within values reported by Handley et 

al.  (2004) for Palmaria palmata. The upper range of values for δ13C of -18 ‰ to -22 ‰ 

overlap with those quoted in Raven et al. (2002) for Palmaria palmata of -16.5‰ to -

20.5‰ and the lower values are more depleted although Raven et al. (2002) quotes a 

value for Palmaria decipiens of -31.4‰. 
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Variation in δ15N could be interpreted as seasonal with a peak in spring for all sites and 

a low in late winter. However, this study presents results for a single year and it is 

possible that the dip in δ15N values in February is a one-off event, perhaps associated 

with the anomalous weather experienced in February 2005 rather than a seasonal cycle. 

The periodicity in the data is, however, consistent with Mariotti et al.’s  (1984) findings 

regarding the 15N content for suspended particulate matter in the North Sea. 

Immediately prior to the spring phytoplankton bloom, δ15N values varied from ~ 4‰, 

increasing to ~10‰-12 ‰ during June and July at the height of the bloom, and declined 

during autumn (see also Cifuentes et al. 1988; De Brabandere et al. 2002). It was 

suggested that during the pre-bloom period the light limited and nitrogen sufficient 

condition of the phytoplankton would result in a significant isotope fractionation during 

nitrogen assimilation; the phytoplankton would be depleted in 15N relative to the 

nitrogen source. During the nitrogen limited conditions prevailing at the height of the 

bloom, isotope fractionation would be low or would not occur and the phytoplankton 

would exhibit 15N content similar to the nitrogen source. It is also possible that 

phytoplankton assimilate more enriched 15N ammonium when ambient nitrate 

concentrations are low (Owens 1987). Either way, the data here show that there can be 

significant changes in nitrogen isotopic composition throughout. 

 

The seasonal variability in carbon isotope is consistent with findings elsewhere for 

macroalgae (Brenchley et al. 1997; Vizzini et al. 2002) and seagrasses (Goering et al. 

1990; Kang et al. 1999) with the most enriched δ13C values obtained in summer and the 

most depleted in winter.  
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The seasonal differences observed in this study can be related to environmental factors. 

Freshwater run-off, irradiance levels, temperature, carbon and nitrogen sources and 

water movements are the main factors known to affect carbon and nitrogen isotopic 

composition in marine macrophytes (Vizzini et al. 2003). Here, there may be several 

causes of the observed seasonal differences in the isotopic composition of macrophytes 

and all the factors previously cited may be of influential to differing extents. Generally, 

however the depletion of both isotopes in winter and early spring months is likely to be 

due to fractionation at uptake by algae favouring the lighter isotopes when there are 

ample ambient nutrients and low light levels resulting in low productivity. Algae taking 

up the lighter isotopes are either advected away from site or sediment out onto the 

benthos. 

 

Enrichment of δ15N and δ13C in summer occurs when the seaweeds are growing 

quickly. With the consequent increased uptake rates, fractionation is minimal, resulting 

in a higher uptake of the heavier isotope. Furthermore, in summer, the available ambient 

nitrates are enriched in 15N as a result of preferential uptake of the lighter isotope by 

phytoplankton earlier in the season. In late summer, expansion of heterotrophic 

populations grazing on the phytoplankton can lead to a reduction in δ15N as a result of 

NH4
+ excretion. Excreted products from the zooplankton are isotopically lighter than the 

organism or its prey (Checkly and Miller 1989). The farm may also be influencing 

results. 

 

The higher Farm site value for δ13C in May 2004 possibly reflects the proximity of this 

site to cage group ‘E’ and may indicate slightly different carbon isotope sources. 

Palmaria palmata is believed to be able to take up carbon as either  HCO3
- or CO2 
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(Johnston et al. 1992). Carbon from one of these two sources available to the algae may 

be more enriched as a result of proximity to the farm cages. 

 

In May 2004, δ15N was relatively high across sites. The Farm site values from July 

declined consistently until February 2005. These changes correlated well with 

reductions in added feed to the ‘E’ cage group (Figure 7.2). The Channel site with 

consistently high values of at least 8‰, except for February 2005, may be taking up 

isotopically enriched nitrogen originating from cage group ‘D’ despite a separation of 

nearly 600 m. The Point sampling site also may have received a mixture of both farm-

derived and naturally available 15N giving intermediary values for δ15Ν. While it was 

believed that the ‘Point’ and ‘Channel’ sites had minimal exposure to farm-derived 

wastes, and thus nutrients, a significant proportion of farm-derived nitrogen in the 

thallus which may have been derived from re-mineralisation of processed nitrogen. 

 

The seasonal pattern of δ15Ν abundances for the sites may be indicative of current 

patterns for Calbha Bay as depicted in Figure 7.7. These proposed current patterns were 

also supported by current meter measurements conducted by Stirling University for the 

three cage group sites at Calbha, measured as part of regulatory requirements to SEPA 

(Scottish Environmental Protection Agency) for the farm lease sites in 1999. Cage 

groups ‘D’ and ‘E’ have residual currents in a southerly direction, while the ‘C’ cage 

group has a residual north to south westerly component (see appendix 1). A model of 

current movements in the bay, based only on tidal movements and current meter results, 

suggests similar current patterns (SAMS, Gillibrand pers com). If the effects of the 

prevailing south-westerly winds are incorporated, overall water movement through the 

bay towards the northeast would be emphasized. The proposed current patterns support 

‘new’ water to the area being received on to the area of coast closest to the Farm site. 
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When farm feed inputs are decreased, the Farm site δ15Ν values also decrease relatively 

quickly as farm-derived nitrogen becomes less important and more nitrogen is taken up 

from the ‘new’ water by the plants. ‘New’ water, is sourced from offshore, and is likely 

to have higher nitrate levels and lower abundances of 15Ν. 

 

 

Figure 7.7 Proposed principal water movement patterns at Calbha that would explain 
the seasonal change in 15N abundances in Palmaria palmata as determined for the three 
monitored sites. They are also consistent with current meter measurements taken at each 
of three cage sites. 
 

Similarly, the decrease across all sites in the δ15Ν values for the February 2005 

sampling session agrees with the replenishment of coastal waters with well mixed 

offshore waters with high nitrate concentrations that are commonly associated with this 

area of the northeast Atlantic in winter, with values of 4 to 6 ‰ for δ15Ν (e.g. Altabet 

1996; Voss et al. 1996; Rolff 2000; Antia et al. 2001; Savoye et al. 2003). These low 

values followed the extraordinary hurricane event that occurred on the west coast of 

Scotland in January 2005. Winds in excess of 100 mph were experienced over a number 

of days and would have resulted in a flushing of all inshore coastal waters with well 
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mixed offshore waters. This was reflected in the low δ15Ν abundances measured at all 

three sites in February 2005. The ready availability of the nitrate with respect to 

ammonium nitrogen from the farms would have swamped the δ15Ν signal. The sharp 

increase in δ15Ν for the following sampling session in April 2005 agreed with a general 

increase experienced in late spring after lighter 14N nitrate is preferentially taken up by 

phytoplankton in early spring (Altabet et al. 1991; Nakatsuka et al. 1992). 

 

There may also be some enhancement of δ15Ν levels from sediments under the sites of 

former cage groups. At a trout farm in Sweden, Hall et al. (1992) found 23% of feed 

ended up on the bottom as particulate matter from excess feed and faeces. 11% of the 

nitrogen input to the farm sediment was released back into the overlying water on a 

seasonal basis. This correlates well with estimates of benthic recovery of weeks to 

nearly three years, following movement of cages when presence of sulphides or biota is 

taken as a measure of recovery (Holmer and Kristensen 1996; Karakassis et al. 1999; 

Brooks et al. 2003; Macleod et al. 2004). This, however, does not indicate how much or 

at what rate nitrogenous material is being released. McGhie et al. (2000) found that 

benthic oxic conditions were comparable to 30 m from the cages after 12 months but 

there was evidence that nitrogenous material of fish farm origin remained in the 

sediment. In Calbha Bay for the 2003-2005 season (April 2003 to February 2005), 1581 

tonnes of feed was added (fish cages C & E). At the finish of harvesting, as much as 

364 tonnes may have found its way to the sea bottom underneath the cages. If we 

assume, as a worst case scenario, that most of the nitrogen (29 tonnes) is dissolved into 

the water column from the finish of harvesting (as it is likely that there is minimal 

denitrification, e.g. Christensen et al. 2000), then over a period of a minimum of 2 

months to a maximum of 12 months, there could be a release of  78-485 kg of nitrogen 

into the water column each day throughout the bay, or the equivalent of 12-77 μM 
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(Calbha Bay volume of approximately 6.3 million cubic meters seawater). Absolute 

concentrations within Calbha Bay would vary depending on the flushing of the Bay, and 

certain parts of the Bay would concentrate the dissolved nitrogen more than others. 

These figures indicate a considerable of pool of nitrogen available for macroalgal 

uptake. 

 

For δ15Ν, the data suggested a close agreement between added feed and elevated 

abundances in the seaweeds of δ15Ν of approximately 8.5‰. The elevated abundances 

determined at the Channel and Point sites indicated that the influence of fish farm-

derived nitrogen on δ15Ν levels may be experienced at greater distances from the fish 

farm cages than anticipated. The Channel site is approximately 600 m from the ‘E’ 

cages and the Point site is 500 m from the ‘C’ cage group. However the picture is 

further complicated by the possibility of the presence of reprocessed nitrogen in the bay. 

This project would have benefited from regular sampling for 15N in dissolved fractions 

such as ammonia, nitrate and DON and sampling of P. palmata at greater distances 

from the farm cage groups. 

 

Percentage nitrogen in P. palmata ranged from 3.6 to 7.8%. The upper values are 

relatively high values for P. palmata and are likely to be reflective of generally higher 

nutrient availabilities in the water. Lower light values experienced in these higher 

latitudes may enhance nitrogen storage levels. 
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7.2 Geographic variation in nitrogen isotope abundances in 
Palmaria palmata. 

The aim of this section was to look at variation in nitrogen isotope values in Palmaria 

palmata at a broader scale across a number of Lochs that contain fish farms, comparing 

different lochs and inside lochs with outside. This would give some indication of the 

extent of influence of farm-derived nitrogen geographically and indicate other possible 

sources of nitrogen enriched with 15Ν. 

 

Scottish Lochs suitable for salmon farming have been categorised by the Scottish 

Executive, based on predicted relative levels of nutrient enhancement and percentage 

areas of seabed degraded by organic carbon deposition. They are scaled from 0–5 for 

nutrient enhancement and for seabed degradation, and the two scaled values are added 

together to provide a single combined index. On the basis of this combined index, areas 

are designated as Category 1, 2 or 3, where Category 1 areas are considered to be the 

most environmentally sensitive to further fish farming development due to high 

predicted levels of nutrient enhancement and / or benthic impact (Gillibrand et al. 2002; 

FRS 2006). For the Loch Duart Farm Sites, Calbha is a Category ‘1’, Badcall is ‘2’ and 

Loch Laxford is ‘3’. 

 

Gubbins et al. (2003), in a eutrophication assessment of Scottish Lochs, found that data 

regarding the possible impact on composition of macroalgal communities in areas 

surveyed were not available. The researchers sampled fucoid macroalgae for nitrogen 

isotope ratios to determine where the nitrogen they were assimilating originated. No 

trends in the nitrogen isotope composition of fucoid algae with increasing distance from 

individual salmon farms were evident. However, preliminary comparison of loch-
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averaged values with predicted nitrogen enhancement suggested a possible relationship 

between these parameters. 

 

Nitrogen isotope evidence for dispersion of nitrogen at distance from the input source 

has been used in a number of studies. Vizzini and Mazzola  (2004) found the nitrogen 

isotope signal from fish farm waste was readily detectable in primary producers, 

including algae, and impacts were detected 500 m from the effluent source. Vizzini et 

al. (2005) found elevated δ15N in seagrass leaves greater than 500 m from the effluent 

pipe of a land-based fish farm in the Mediteranean. Savage and Elmgren (2004) found 

elevated levels of δ15N in Fucus vesiculosus up to 24 km from a sewage effluent point 

in a Baltic Sea coastal embayment. Seagrass has been used more often in analysing δ15N 

abundance variations as a result of anthropogenic input. 

 

Ye (1991) found influence to 30 m distance in sediments using the δ15N signature under 

salmon cages in Tasmania. Sara et al. (2004) found elevated δ15N in sediments up to 

300 m from cages in the Mediterranean. 

 

Savage and Elmgren (2004), looking at variation in δ15N in sediments with distance 

from a sewage pipeline in the Baltic Sea, found that δ15N values decreased significantly 

with distance (9 ‰ down to 4 ‰) and approached background levels within 10-12 km 

of the outfall after a sewage treatment upgrade. Elevated δ15N signals were found in 

macroalgae from sewage derived nitrogen 10-15 km from the outlet in Moreton Bay, 

Queensland (Costanzo et al. 2001). The 15N sewage signal originating from Pirovac Bay 

in the Central Adriatic was evident up to nearly 8 km NW of the Bay as detected in a 

sea anemone (Anemonia sulcata), though it decreased more quickly with distance from 

the shore (Dolenec et al. 2005). 
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Cole et al. (2005) measured δ15N signatures of macrophytes and particulate organic 

matter (POM) in six estuaries and three freshwater ponds of Massachusetts. They found 

that the δ15N values of macrophytes and POM increased as water-column-dissolved 

inorganic nitrogen concentrations increased. They found that δ15N of macrophytes, but 

not of POM, increased as N load increased. The δ15N values of macrophytes and 

groundwater NO3
- tracked the percent of wastewater contribution linearly.  

 

Mapping of δ15N has thus been shown to be a useful tool in tracking the impact of 

effluent nitrogen from a variety of sources. It can be measured in particles in the water 

column or in sediments or primary producers or consumers. The volume of the input 

and the dispersion characteristics of the area, determines how far from the source the 

nitrogen is detected. A number of studies (e.g. Savage et al. 2004; Cole et al. 2005) 

have shown the capacity of marine coastal systems to incorporate and retain nitrogen. A 

report by Gubbins et al.  (2003) indicated that Scottish Lochs may incorporate and 

amass nitrogen from anthropogenic sources, including fish farms, and this will be 

reflected in the δ15N signal of those lochs. This could be expected to be most 

pronounced in lochs with lower flushing rates. 

 

In the area of the northwest Scottish coast where the sites in this study were located, 

possible sources of plant available nitrogen are limited. This is a relatively pristine 

coastal area of the British Isles and anthropogenic inputs are minimal (Rydberg et al. 

2003). Plant available nitrogen comes principally from offshore sites as nitrates which 

peak in concentration in the winter (Slesser and Turrell 2003). In summer, ammonium is 

the largest source of nitrogen and arises principally from heterotrophic organisms in the 

water column and remineralisation of organisms such as algae. 
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Rhydberg et al. (2003) reviewed nutrient loads arising from riverine inputs for the UK 

based on SEPA data. They found that river nutrient concentrations varied considerably, 

depending on the type of land use, and to lesser extent, ON the type of soil. Rivers in 

rural areas, e.g. Dee, Ayr and particularly Annan and Tweed, had high nitrate 

concentrations (1 mg l-1 or more), whereas rivers such as Carron and Lochy featured 

mean values of 0.07 and 0.09 mg l-1. Although data from north of the Caledonian Canal 

were limited, nitrate input on the north coast was assessed to be small compared to the 

rest of the UK coast (see Table 7.1). 

 

While there are freshwater inputs adjacent to the Loch Duart Ltd. sites at Lochs 

Laxford, Badcall and Calbha, these are assumed to be contributing minimal nitrates for 

plant growth. However, Rhydberg et al. (2003) noted that in Scottish streams, while the 

nitrate concentrations are low, total nitrogen is high due to organic compounds. For the 

purposes of this project, inputs from land are assumed to be minimal, impacting little on 

nitrogen stable isotope abundances. 

 

Table 7.1 Average river runoff, concentrations and nitrate fluxes in different regions of 
Scotland. Most uncertainty for the north, due to few observation sites (from Rhydberg et 
al. 2003). 

District Runoff 
(m3s-1) 

Nitrate 
concentration 
(mg l-1) 

Nitrate 
flux 
(t y-1) 

NNW  720 0.07 1,600 
NNE  490 0.2 3,200 
NE  360 0.7 8,000 
E  468 1 14,900 
W  714 1.2 27,000 
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Methods 

Palmaria palmata was sampled at farm lease areas in Loch Laxford, Badcall Bay and 

Calbha on 22nd and 23rd June 2005. At the time of sampling, there were first year fish 

at Loch Laxford, fish of harvestable size in Badcall (second year fish), and at Calbha 

fish had just been harvested (see Figure 7.8). Three sites were sampled in the lease areas 

that contained fish (Badcall Bay and Loch Laxford) and one site at Calbha in close 

proximity to salmon cages (within 100 m, see Figure 7.9 - 7.11) and at varying numbers 

of sites at distance from cages at all three farm lease sites. 

 

The aim was to sample at even greater distances from the farm sites, but on the day of 

sampling, weather and swell precluded sampling at more remote locations including at 

the mouth of Loch Laxford. 

 

At each site, P. palmata was sampled from Laminaria hyperborea stipes at low tide at 

three sub-sites, each approximately 10 m apart. At least five P. palmata plants were 

collected at each sub-site. These were placed in plastic bags and kept at 4oC until 

processing on return to the laboratory. Plants were analysed as described previously. 

 

To investigate the possible differences of sampling P. palmata from adjacent rocky reef 

surfaces as opposed to on L. hyperborea stipes; at one site: LaxOut1, three samples 

were sampled from both habitat types.  
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Figure 7.8 Feed added (bars) and biomass of fish (line) for months January 2004 to 
June 2005 for the three Loch Duart sites. 
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Figure 7.9 Location of sampling sites (stars) at Badcall Bay. 
 

 

Figure 7.10 Location of sampling sites (stars) at Calbha Bay. 
 

 



 248

 

Figure 7.11 Location of sampling sites (stars) at Loch Laxford. 
 

Results 

A comparison of sites adjacent to the farm cages across all farm lease sites (Figure 7.12, 

one way ANOVA, site nested, without LaxOutT1) showed that the levels of δ15Ν in the 

plants were significantly greater at the farm lease sites with fish, Loch Laxford and 

Badcall, than at Calbha (df: 2, F = 21.5, p <0.001). The mean δ15Ν value for sites 

adjacent to the farm cages was 9.2‰ (at Badcall and Laxford) and 6.6‰ at Calbha. At 

Badcall, there was a significant difference between cage sites (9.2‰) and sites away 

from the farm cages (7.9‰, df: 1, F = 19.44, p < .001) but no significant difference for 

Loch Laxford when close to cage sites were compared with those away. High 

abundances were also detected away from cages. 

 

Values for δ13C showed no significant differences for farm leases across all sites (Figure 

7.13). Percentage nitrogen in the plants was higher at the site with the most fish (Figure 

7.14). Badcall plants had a mean N content of 5.5%, Laxford  4.6%, and Calbha 4.1% 

mussel farm 
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(df: 2, F = 6.94, p < .001). There are no significant differences in percentage C in plants 

between lease sites. 

 

The intertidal rocky reef sourced plants were significantly different from immediately 

adjacent plants collected from L. hyperborea stipes (t-test, < 0.05) for δ15Ν, δ13C and 

percentage carbon; δ15Ν was greater for the intertidal plants (9.1; 7.5‰),  δ13C is lower 

(-24.4; -20.3‰) and percentage carbon was greater (42.6; 38.6‰,  no significant 

difference between individual sites). 

 

 

Figure 7.12 Mean δ15Ν of Palmaria palmata determined for all sites. Each value is the 
average of three samples taken within 20 m of the coastline. Sites that share the same 
letter are not significantly different at the p = 0.05 level. 
 

 

Figure 7.13 Mean δ13C determined for all sites. 
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Figure 7.14 Percentage nitrogen for Palmaria palmata from all sites. Sites that share 
the same letter are not significantly different at the p = 0.05 level. 
 

Discussion 

At the lease site with the highest biomass of fish at the time of sampling (Badcall), there 

were higher δ15Ν values for the plants obtained close to the cages (mean of 9.2‰) 

relative to far away (7.9‰). This included the BadOut1 site, where the levels were 

relatively high at 8.3‰. Conceivably, currents may have been transporting nitrogenous 

materials from the vicinity of the farms to this outer site, a distance of 840 m. 

 

While the Laxford site had fish at the time of sampling, there was a low biomass 

because they were first year to sea fish. LaxIn1 was adjacent to the fish farm cages that 

had held fish for the greatest period of time (two months) and the plants from here had 

greater δ15Ν values (9.2‰) than the other two sites adjacent to the other cages at 

Laxford. The elevated abundances of 15Ν values from plants from LaxOut2 and 

LaxOut3 are more difficult to account for. These may be receiving wastes on the 

outgoing tide from the ‘F’ group fish farm cages. Previous studies (see chapter 2 and 

section 4 of this chapter) have shown that there is a strong tide running in the main 

channel at Loch Laxford. This may be responsible for disseminating wastes to the outer 

two sites. If the elevated δ15Ν detected at LaxOut2 and LaxOut3 originates from wastes 
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from the fish farm cages, then wastes are being incorporated at distances of up to 1.3 km 

from the fish farm cages.  

 

There are other possibilities, however, which include: 

1/ The nutrients with enhanced levels of 15N may have come from the mussel farm 

that is located between LaxOut3 and the island Eilean Ard. Recent research has 

indicated that the contribution of mussel farms to nitrogen and phosphorus in 

seawater has been underestimated (Nizzoli et al. 2005). Mussel rope 

communities have been shown to be an enormous sink for oxygen and 

particulate organic matter, and a large source of dissolved inorganic nitrogen and 

phosphate to the water column. Mussel farming also induced intense 

biodeposition of organic matter to the underlying sediments, which stimulated 

sediment oxygen demand, and inorganic nitrogen and phosphorus regeneration 

rates compared to a nearby control station. 

2/ There are other sources of enhanced abundances of 15N in the Loch such as those 

that result from denitrification. 

3/ Within the Loch, there are areas where preferential uptake of the lighter nitrogen 

isotope during uptake of nitrate by phytoplankton has resulted in a higher 

concentration of the heavier isotope in the remaining nitrate. 

4/ There are elevated abundances of 15N as a result of the activity of heterotrophs in 

the water column of the Loch. 

5/ Residual elevated abundances of 15N remain in the Loch from previous farming. 

As already noted, on the day of sampling, weather hampered collection of P. palmata so 

that algae could not be collected at even greater distances from the Laxford fish farm 

cages. 



 252

 

A comparison of the δ15Ν abundances for the plants from L. hyperborea stipes with 

those from the rocky shore immediately adjacent shows significant differences in δ15Ν, 

δ13C and percentage carbon. For δ15Ν, the differences for the intertidal rock-bound 

plants arise from either from sediment or microbial activity associated with the plants’ 

habit (i.e. recumbent on the rocks). They may also source nitrogen from some of the 

animals on the seashore such as limpets and barnacles. The difference in the δ13C may 

reflect either productivity differences between the two differing habitats, differing light 

climates (Raven et al. 2002), uptake of C02 from the air (Surif and Raven 1990) or a 

combination. 

 

This section has shown that habitat is important for the nutrition and subsequent 

biochemistry of the plants with potentially wide variation in stable isotope abundances 

on small spatial scales and underlies the importance of properly stratifying the sampling 

design. This concurs with the findings of Savage et al. (2002) in Denmark where, 

although sewage-derived nutrient impacts were evident even 20 km distant from the 

point source, comparisons among local basins showed that local physical features (e.g. 

sill depth) can greatly ameliorate or exacerbate impacts and highlighted the need for 

spatially explicit studies to detect impacts. 

 

There is evidence from this section that δ15Ν may be enhanced as a result of uptake of 

fish farm nitrogen at distances from 0.8 to 1.3 km from source. 
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7.3 Variation in δ15Ν for cultured seaweeds. 

 

The aim was to determine how δ15Ν abundances for cultured seaweeds of known age 

and similar backgrounds are affected by outplanting to sites of varying environmental 

conditions, including those close to and at distance from salmon farm cages. The factor 

of depth was also considered. 

 

Percentage nitrogen of the plants was determined so that nitrogen budgets could be 

estimated for any cultured seaweeds grown in the vicinity of the fish farms. In a similar 

study investigating the bioremediation potential of growing Gracilaria chilensis 

adjacent to a salmon farm in Chile, results showed that cultivation of a 1 hectare plot of 

the algae close to the fish cages had the potential to remove at least 5% of dissolved 

inorganic nitrogen released from a fish farm producing annually around 227 metric tons 

of salmon (Oncorhynchus mykiss and 0. kisutch). Data obtained from this section are to 

be used for similar calculations for Loch Duart farms (Chapter 8). 

 

Methods 

Frames supporting cultures of Laminaria saccharina and Palmaria palmata were 

deployed at a number of sites close to and distant from fish farm cages, three frames per 

site, at sites differing principally in exposure to wave action (see maps in chapter 6 for 

location). Nitrogen isotope levels were determined in conjunction with carbon isotope 

levels, percentage nitrogen and carbon content. The variation of these elements was also 

examined in the cultured seaweed. The advantage of using cultured plants was that they 

were of a known age and similar background, reducing the variables that needed to be 
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considered when comparing sites. Samples were also taken from seaweeds grown on 

longlines sited close to and at distance from a cage group at Badcall, and the fallow site 

in 2004-2005 (i.e. Calbha). Each longline had three groups of five droppers of each of 

the two species. The algae from longlines were used to look at differences in measured 

factors with depth. Seaweed were cultured as detailed in chapter 4 and put out onto the 

sites on longlines and frames as described in chapter 6. 

 

Palmaria palmata sampled from the frames consisted of plants outplanted in either 

January or February 2005. Palmaria palmata plants harvested from the longlines 

consisted of plants taken from the January outplant. Individual samples from longlines 

were taken at 1, 2, 3 and 5 m depth. Plants were harvested in mid-late June 2005. 

Individual samples consisted of at least five plants. Plants were kept in plastic bags at 

4oC until sub-samples were taken as described previously for freeze drying and 

subsequent analysis by mass spectrometer. For the farm longline, all three groups of P. 

palmata droppers were sampled. Two groups were sampled from the Badcall and one 

group from the Calbha reference longlines. 

 

Each sample of L. saccharina taken from the frames consisted of 5 cm diameter discs 

cut from the mid-point approximately 10 cm above the stipe blade intersection from 

three plants. Samples to be analysed consisted of freeze dried fragments from each of 

the three plants. At each site there were three frames and thus three samples. Laminaria 

saccharina was also grown in three groups of five droppers at each of the three 

longlines. On longlines, groups were sampled at 1, 2, 3 and 5 m depth with each sample 

consisting of sections cut from three plants in the same manner as from the frames. All 

three groups were sampled from the Farm and Badcall-reference longlines and one from 

the Calbha longline. 
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Samples were prepared and statistical analysis conducted as previously described. 

Results 

δ15Ν values for the frames when comparing farm and non farm sites showed a 

significant difference (Table 7.2), with farm sites having slightly higher values. Most of 

the frame sites had high abundances of 15N (δ15N > 9‰) for P. palmata and L. 

saccharina within the bays when compared to outside, the significant exceptions being 

the south eastern farm site (FSE; P. palmata; 7.5 ‰ and for L. saccharina; 7 ‰) and 

CalbhaLL (CLL) for L. saccharina frames (7.5 ‰). 

 

Except for these anomalous results there were similar trends across sites between the 

species of alga. For both frames and longlines, the algae of both species have higher 

nitrogen contents close to the farm than those further away. 

 

For the frame grown algae, δ13C was higher in the algae grown adjacent to the farms, 

but longline-grown algae were not significantly different. The frame-grown P. palmata 

had significantly higher carbon contents adjacent to farm cages than further away. 

 

There were no readily apparent trends or significant results for δ15Ν or δ13C with depth 

(not presented) although the algae grown at depth appeared to have a higher nitrogen 

content. 
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Figure 7.15. Mean values of δ15Ν, δ13C, percentage N and percentage C for Palmaria 
palmata grown on the frames. Sites that share the same letter were not significantly 
different at the 0.05 level. See lower graph for x-axis legend. 
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Figure 7.16.  Mean values of δ15Ν, δ13C, and percentage N for Laminaria saccharina 
grown on the frames. Sites that share the same letter are not significantly different at the 
0.05 level. FN- Farm north, FSE- Farm south east, FSW- Farm south west, CLL- 
Calbha longline, CR- Calbha reference, BLL- Badcall longline, OE- Outside east, OM- 
Outside middle, OW- Outside west and Sh- Sheltered Badcall. 
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Figure 7.17 Mean values of δ15Ν, δ13C, percentage C and percentage N for Palmaria 
palmata grown on longlines. Sites that share the same letter are not significantly 
different at the 0.05 level. F12, F30 and F45 were 12, 30 and 45 m from farm cages, C1- 
Calbha longline group, B1, B2 & B3- Badcall longline groups. 
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Figure 7.18 Mean values of δ15Ν, δ13C, and percentage N for Laminaria saccharina 
grown on longlines. Sites that share the same letter are not significantly different at the 
0.05 level. F10, F20 and F55 were 10, 20 and 55 m from farm cages, BadLL1, 
BadLL2C1- Badcall longline groups, Calbha longline group. 
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Table 7.2 Summary of ANOVA results comparing δ15Ν, %N, δ13N and %C for Farm 
versus non-farm sites. Site nested within farm; degrees of freedom, F ratio and 
significance level. Significant farm versus non-farm values are in bold. 
 

 δ15Ν    %N    
FRAMES         
L. saccharina         
 Means df F p Means df F p 
Farm/Non-farm 9.4/8.8 1,23* 5.85 0.029 1.9/1.2 1,25 113.13 <.0001 
Site (Farm)  7,23* 3.95 0.012  8,25 5.44 0.002 
P. palmata         
Farm/Non-farm 9.2/8.7 1,25* 5.33 0.03 4.6/2.3 1,29 160.9 <.0001 
Site (Farm)   7,25* 6.58 0.001  8,29 4.69 0.002 
LONGLINES         
L. saccharina         
Farm/Non-farm 9.2/9.7 1,23 4.98 0.039 1.7/1.3 1,23 41.91 <.0001 
Site (Farm)  4,23 0.52 0.725  5,23 1.22 0.339 
P. palmata         
Farm/Non-farm 9.3/9.7 1,27 11.47 0.003 2.7/2.0 1,27 14.46 0.001 
Site (Farm)  5,27 4.4 0.007  5,27 1.47 0.241 

 δ13C    %C    
FRAMES         
L. saccharina         
Farm/Non-farm -20/-21.2 1,23 10.27 0.006 29.1/29.7 1,23 0.13 0.725 
Site (Farm) *  7,23 3.9 0.013  7,23 1.42 0.269 
P. palmata         
Farm/Non-farm -22.7/-24.2 1,27 7.4 0.014 47.0/42.2 1,27 8.74 0.008 
Site (Farm)  7,27 2.11 0.092  7,27 0.85 0.564 
LONGLINES         
L. saccharina         
Farm/Non-farm -22.4/-21.8 1,23 1.26 0.277 31.7/29.4 1,23 3 0.101 
Site (Farm)  4,23 1.95 0.145  4,23 2.53 0.076 
P. palmata         
Farm/Non-farm -21.3/-21 1,20 0.46 0.508 38.8/39.4 1,27 0.33 0.572 
Site (Farm)  5,20 1.54 0.241  5,27 6.04 0.001 

* Analyses did not include FarmSE. 

 

Discussion 

Within the bays, the δ15N results that are most at odds with expected were those for 

FarmSE (FSE) which were low for Palmaria palmata and Laminaria saccharina 

despite being close to farm cages with the highest measured ammonium levels (see 

chapter 2). Care had been taken to set frames at all farm cages at similar orientations 

with respect to light in particular (all on the southern side of cages or not shaded), to 
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minimise differences between frames other than exposure to farm effluent. However, 

farm management moved spare cages over the frames at FarmSE between February and 

March 2005. These appear to have limited light availability to the frames which is 

reflected in low growth of the plants (see chapter 5). Despite higher measured nitrogen 

availability, as reflected in highest seawater ammonia concentrations measured at this 

site (see chapter 2) and in the plant tissue, growth rates were low and δ15Ν was also low. 

Phytoplankton have been found to discriminate against uptake of 15N when nitrogen is 

abundant and the alga is exposed to low light conditions (Wada and Hattori 1978). This 

may explain the anomalous results for this cage group. 

 

Low δ15N and percentage nitrogen values for the sites in the area between Badcall Bay 

and Calbha Bay, particularly CalbhaRef (CR) and OutsideE (OE) suggest wide 

dispersion of farm-derived nitrogen within the bays where δ15N values are consistently 

higher. 

 

When the anomalous FarmSE results were excluded and comparisons made between 

farm and non farm for P. palmata and L. saccharina for the frames and the longlines. I 

found consistent results indicating that the farm grown algae (see Table 7.2) were taking 

up farm-derived nitrogen.  

 

Within the bays, the δ15Ν for the plants on frames near cages were low relative to those 

on frames away from the cages, in particular in the more sheltered parts of the bays such 

as Calbha Bay (CLL, except for Laminaria saccharina δ15N), the bay with the Badcall 

reference longline (BLL), and the sheltered site (Sh). This was due to either one or more 

of the following: 
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• utilisation of re-processed farm-derived nitrogen, either through 

zooplankton or bacteria (heterotrophs) which were further fractionating 

the nitrogen that then became available to the plants. 

• Utilisation of re-mineralized nitrogen from sediments or  

• Nitrogen uptake may have been restricted to nitrates with heavier 15N as 

a result of previous preferential uptake of the lighter isotope by 

phytoplankton (i.e. the higher abundances of 15N might not always 

necessarily have been originating from fish farm cages). 

 

When compared to the multiple reference sites away from the farms, farm grown algae 

were found to have higher percentage nitrogen and higher δ15Ν. 

 

The L. saccharina δ15N for CLL (frame) is lower than the result for the L. saccharina 

from the longline and the results for the P. palmata for the longline and frames. The 

reason for this is not clear, but may relate to reasons as outline previously. It should be 

noted that the frames were not located directly over the farm cage site. Perhaps, they 

were not using nitrogen released from the sediments below the cages. They were also 

closer to the creek at the eastern part of Calbha Bay and nitrogen from the burn may be 

influencing results although the nitrogen available is believed to be small from the 

creeks (Rhydberg et. al. 2003). 

 

Within the areas where the farms were sited, farm based nitrogen was widely distributed 

and may have been concentrated in quieter areas of the bay where reprocessing of the 

nitrogen was occurring, further concentrating 15N. For example, urea, when hydrolysed 

to ammonia is easily lost by volatilisation to the atmosphere. Fractionation during this 

process results in the ammonia, which is lost from the system, being depleted in 15N. 
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The remaining ammonium, now correspondingly enriched in 15N, is converted to 15N-

enriched nitrate, which is readily leached and dispersed by water (Heaton 1986; 

Costanzo et al. 2001). Elevated levels of δ15Ν in plants away from the farms cages 

suggested that farm based nitrogen may be taken up by plants at least one kilometre 

from farm cages. 

 

Plants close to the cages had elevated δ13C when compared to plants from sites further 

away. This may have related to differing origins of carbon taken up by the plants. A 

significant proportion of the carbon in the plants close to the cages may have originated 

as a result of fish culture. 

 

Nitrogen and carbon isotope abundances for P. palmata were found to be correlated 

with water movement as measured by plaster loss (Figures 7.19). Water movement has 

been shown to be a determinant of δ13C for periphyton (MacLeod and Barton 1998; 

Trudeau and Rasmussen 2003; Singer et al. 2005) and in seagrass and epiphytes of 

seagrass (France and Holmquist 1997). These differences have been related to boundary 

layer differences and the diffusion of nutrients. MacLeod and Barton (1998) suggested 

differences may be due to the intensity of metabolic activity. 
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Figure 7.19 a). Correlation of water movement as indicted by plaster loss from 
cylinders for each of the frames versus δ15N: r = 0.48, df = 28, p < 0.01 (Pearson’s 
correlation coefficient). 
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Figure 7.19 b). Correlation of water movement as indicted by plaster loss from 
cylinders for each of the frames versus δ13C: r = 0.54, df = 28, p < 0.01 (Pearson’s 
correlation coefficient). 
 

Isotope analysis and percentage nitrogen of the marine algae indicated that nitrogen in 

plants close to the cages was of fish farm origin. Determining how far from the fish 

farm, fish-farm-derived nitrogen forms a significant proportion of P. palmata nitrogen 

is restricted by the variability in isotope abundances. There is inadequate knowledge of 

all the processes involved in isotopic fractionation. Discrimination of farm-derived 

nitrogen is further compounded by the small difference between farm and background 

δ15N (and δ13C). This is particularly the case in summer when ambient abundances of 

15N are more enriched. 
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7.4 Gradient in stable nitrogen isotope abundance away from 
a fish farm cage group 

 

This section was part of an initial pilot study to determine the potential for using δ15Ν 

values to investigate the fate of fish farm-derived nitrogen and can now be considered in 

the light of the former sections. The aim of this section was to look at finer scale 

changes in δ15Ν in natural populations of Palmaria palmata close to the salmon cages to 

see how feasible it was to determine how far fish farm-derived nitrogen may be taken 

up by the plants using 15N abundances. 

 

Methods 

The study was conducted at Loch Laxford in 2003 when fish biomass was at a 

maximum for the farm lease site (see Chapter 1 for biomass of fish on site). The project 

was conducted at the western most cage system adjacent to Eileen Ard (Figure 7.12). 

Two plant types were considered for analysis; these were wild plants and cultured 

tethered plants. 

 

Wild plants 

To examine variation in nitrogen isotopes with distance from the cages, plants were 

sampled from wild populations growing on the pontoons around the salmon cages and 

from adjacent rocky reef surfaces at low tide at successively greater distances away 

from the farm up to 600 m (Figure 1.3). The principal direction of sampling was to the 

north west, avoiding the confounding influence of farm-derived nitrogen originating 

from salmon cages further up the loch (to the south east) and to take advantage of 
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relatively consistent rocky reef surfaces from which the algae were sampled. Samples 

were all collected on 31 July 2003. Some ancillary samples were also collected at sites 

randomly chosen within the loch. 

 

Tethered plants 

As part of the complementary study into growth of tethered P. palmata with varying 

distance from the fish cages (see chapter 3), 10 mm weighted polypropylene lines 

(droppers) were hung from a header line at distances of 0, 5, 25 and 50 m from the 

cages. Some plants were also maintained at a reference site, approximately 700 m to the 

west on a buoyed line. The droppers and buoyed line had P. palmata plants attached at 

depths of 1, 2, 3, 5 and 6m. The plants were in the water for a period of 29 days. After 

pictures of the plants had been taken for growth analysis, plants from 3 m depth were 

kept for nitrogen isotope analysis. Samples were all collected on 30 July 2003. 

 

Sample preparation and analyses 

The plants were sampled from near the apices of actively growing plants to ensure that 

the analysis was reflecting uptake of nitrogen from that site (as distinct from nitrogen 

that may already have been incorporated in the plant from its previous location for the 

tethered algae) for the time they were in the water. Actively growing tissue could be 

distinguished as it had a relatively clean surface and the shape of the apices changed 

when growing and adapting to the new environment. 

 

Initial analyses were conducted at SAMS using a Europa Mass spectrometer. Algae 

were dipped in double distilled water to clean off surface contaminants before cutting 
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tissue for analysis and drying at 60oC overnight. Samples were weighed to give an 

expected weight of 100 μg nitrogen. 

  

After experiencing some problems with the SAMS Mass Spectrometer some samples 

were analysed at the Scottish Crop Research Institute in Dundee (SCRI).  Isotope 

analysis at SCRI was carried out using a Europa Scientific ANCA-NT 20-20 Stable 

Isotope Analyser (Europa Scientific, Crewe, UK). At SCRI, samples analysed in single 

isotope mode for δ15Ν (precision ~0.3 ‰). Working standards were a 1:4 leucine/citric 

acid mixture. 

  

Results 

Results show elevated levels of nitrogen isotope close to the cages with decreasing 

abundances with distance from the cages. This was most apparent in the transplanted 

tethered algae where all samples from the lines close to cages (< 50 m) were greater 

than the samples from the reference site (500 m, Figure 7.20-7.22). Samples taken from 

sites outside of this principal area of interest, further up the loch (east), had higher δ15N 

values. 
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Figure 7.20 Site location for samples taken around the Laxford salmon farm cage 
group. Red values indicate the mean values of δ15Ν for three plants. 
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Figure 7.21 Nitrogen isotope abundance values for tethered Palmaria palmata plants 
against distance from the farm cages. 
Each value is a mean of six plants. Sites that share the same letter are not significantly 
different at the 0.05 level. Horizontal bars are the 95% confidence intervals. 
 

 

Figure 7.22 Nitrogen isotope abundance values for wild Palmaria palmata plants 
against distance from the farm cages. Each value represents a mean of three plants 
(horizontal bars are the 95% confidence intervals). Sites that share the same letter are 
not significantly different at the 0.05 level. 
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Discussion 

Declining δ15N trends in plants with distance from the salmon farm cages indicate 

decreasing amounts of farm-derived nitrogen being taken up. Samples from sites 

outside of the principal area of interest, further up the loch (east) were enriched in 15N, 

consistent with greater availability of farm-derived nitrogen likely to be originating 

from cages further up the loch and some build up of farm-derived nitrogen within the 

loch. 

 

The results were in agreement with those obtained in the later geographic (section 7.3) 

and cultured seaweed (section 7.4) studies. However, the full extent of distribution of 

fish farm-derived nitrogen is still poorly defined. At the extent of distances from fish 

farms where plants were sampled, 15N abundances were still relatively high and there is 

some doubt as to whether or not this was as a result of nitrogen of fish farm origin. 

 

More studies are required including comparisons with lochs without fish farm inputs. 

Similarly, more sampling of plants needs to be done outside the lochs, further away 

from fish farms, to better assess natural ambient variations in nitrogen isotopes. 

Sampling needs to be stratified temporally and with habitat type to gauge more 

confidently the impact of fish farm nitrogen. Studies would be assisted by monitoring 

nitrogen isotopes abundances in the water column and relating this to the abundances 

measured in the plants. 
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7.5 Mass Balance for Nitrogen Isotope abundances for 
cultured salmon. 

The use in this project of nitrogen isotope abundances for tracing the fate of salmon 

farm-derived nitrogen assumes that the nitrogen isotope abundances of salmon derived 

and ambient nitrogen have detectably different 15N contents. To test this assumption, 

δ15N for soluble salmon wastes was determined. As the abundance of 15N of the 

ammonium in seawater is not easy to measure, the δ15N for nitrogenous based soluble 

waste products has been estimated here by mass balance. 

  

The projected fate of nitrogen in salmon farm open ocean aquaculture as proposed by 

Black (2001) was used as the basis for calculating the mass balance (Figure 1.3). It is 

recognised that in reality there is some variation around this estimate. Actual amounts 

of soluble N released are dependent on many factors. When farms started operating in 

the early eighties, feeding efficiencies were low and feed conversion rates may have 

been as low as 2:1 reflecting the loss of much feed to the environment. With refinement 

of farming practises, some farms now claim better than 1.1:1 conversion rates (Naylor 

and Burke 2005). There are other factors determining feeding efficiencies including 

feed formulation. Trials are under way to use plant materials in feeds this will affect the 

amount of nitrogen passing into through the system into seawater (Francis et al. 2001). 

Loch Duart salmon feed is sourced (2003-2006) from a Norwegian based company, 

Havsbrun. Havsbrun sources fish for their fish meal from the North Sea and the 

company’s web site claims it consists primarily of Blue whiting, herring, mackerel, and 

caplin. The amount of each of constituent fish species is dependent on season and would 

affect feeding efficiencies and release of nitrogen to the environment. Black’s (2001) 

estimate is used as it represents a median estimate of the nitrogen budget. 
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Methods 

Abundances of 15N were measured in feed, fish flesh and faeces for salmon collected at 

Badcall Bay on 20 June 2005. Five fish (3-5 kg) from two different pens were culled 

and muscle tissue sampled. The fish were also ‘milked’ of faeces using a method similar 

to ‘milking’ for roe. Some of these were harvest fish and had not been fed and had no 

faeces in their intestines resulting in samples from only four fish. Samples of feed were 

obtained from five different feed-lot bags. 

 

Samples were kept cool and freeze dried on return to the laboratory. Samples were then 

ground using a mortar and pestle and sub-samples weighed to give 100 mg of nitrogen 

for analysis in the mass spectrometer. 

 

The following equation was used to calculate the δ15N of soluble waste nitrogen: 

 

δ15N diet = X.δ15N tissue + Y.δ15N faeces + (1-[x + y]) δ15N excreted metabolite 

 

Where x & y are the fractions of the isotope incorporated into tissue and faeces, 

respectively. 

 

Samples of fish feed had also been sampled twice previously in May and August 2003 

and these results have been included for comparison. For each of these samples, a 

salmon farm pellet was taken from three different bags of feed on a salmon walkway 

(Laxford). 

 

Results 
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Calculation of δ15N for soluble fish waste for 20 June 2005 using a mass balance based 

on values of δ15N determined for fish feed and flesh indicates a value of 9.5 ‰ (see 

Table 7.3). 

 

Two earlier measurements had been conducted previously for δ15N of fish feed. The 

value for fish feed of 11.3 ‰ compares with values of 9.1 ± 0.5 ‰ and 9.5 ± 0.5 ‰ 

determined for May and August 2003. The differences indicate some variation in 15N 

abundances in fish feed over time.
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Table 7.3 Values used for calculation of δ15Ν for salmon soluble wastes. Numbers in 
brackets indicate pen number from which they were sampled. 

Source Mean 

δ15N 

n se  

Salmon Flesh (2) 13.92 5 0.19 Av. flesh 
Salmon Flesh (1) 13.76 5 0.17 13.85 
Salmon Feed: 11.26 5 0.16  
Salmon Faeces (2) 11.74 4 0.40  
     
Soluble wastes 9.47    

 

Discussion 

The difference in δ15N between fish flesh and feed of 2.7 ‰ agreed well with general 

enrichment estimates between an organism and its prey of 3.4 ‰ (Minagawa and Wada 

1984) and was in accordance with findings of 2.3% (± 0.3‰) in a study on the effect of 

growth rate on tissue-diet isotopic spacing for Atlantic salmon (Trueman et al. 2005). 

  

The estimated value of 9.5 ‰ for the δ15Ν of soluble nitrogen waste compared well 

with nitrogen isotope abundances measured in algae sampled in June 2005 from 

cultured macroalgae grown next to the salmon cages. These were 9.2 ‰ and 9.4 ‰ for 

frame grown Palmaria palmata and Laminaria saccharina and 9.3 ‰ and 9.2 ‰ for 

longline grown P. palmata and L. saccharina (see section 7.3). It was also very similar 

to values obtained for wild Palmaria sampled from stipes of Laminaria hyperborea 

adjacent to fish farm cages in late June 2005 in Badcall Bay (9.2‰) and Loch Laxford 

(also 9.2‰ , see section 7.2). The close agreement between the derived δ15N value for 

the soluble wastes and algae sampled at a similar time strongly suggests that the 

nitrogen in the algae samples close to the farms is likely to be farm-derived. 
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There was a difference of 2.2 ‰ between fish feed samples taken in May-August 2003 

and the June 2005 samples. The variability in values concurred with the findings of 

Handley et al. (2004) for samples taken from a salmon farmer’s sites in Lochs Linnhe 

and Sunart. Tests of δ15N for 14 fish feed samples taken over October, September and 

February 2002/2003 by Handley et al. (2004) showed an average of 10.4 (± 0.5 se) ‰ 

with a range of 8.4 – 14.6 ‰. This variability suggests that the δ15N of the soluble 

nitrogenous wastes may vary with season but perhaps also in relation to the particular 

fish stocks that make up the fish meal at the time it is processed. 

 

Values of δ15N found for Palmaria palmata as part of this study varied from 4 to 10 ‰ 

with the variation being seasonally related. Lower values can be expected in late winter 

– early spring when ambient nitrates are in abundance and higher values are found in 

summer after the nitrate nitrogen isotope pool has become enriched as found by Mariotti 

et al. (1984) for suspended particulate matter in the North Sea. The value for δ15N of 9.5 

‰ in nitrogenous wastes suggests that calculation of percentage uptake by the algae of 

the different nitrogenous components may be possible in winter when there is a larger 

difference between isotope abundances for source and sink. In summer, however, the 

difference between source and end δ15N is low and the chances of reliably tracing the 

effluent are low. 
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Conclusions 

• There is temporal variation in naturally occurring carbon and nitrogen isotopes 

of P. palmata at Calbha in north-west Scotland. Values range from 4 ‰ to 9+ ‰ 

for δ15N and -27 ‰ to -19 ‰ for δ13C with the more enriched values occurring 

in the summer. 

 

• Farm-derived nitrogen is widely dispersed throughout the lochs containing Loch 

Duart salmon farms. Farm-derived products may be dispersed for distances of 

greater than a kilometre from the cages as evidenced by δ15N values for wild and 

cultured algae. 

 

•  Interpretation of isotope signals is confounded by factors affecting fractionation 

such as water movement and light. Supply of nitrogen and isotope composition 

is also potentially influenced by denitrification, uptake of lighter isotopes by 

phytoplankton enriching the remaining nitrate pool, mineralisation of sediments 

and reprocessing of nitrogen in the water column by heterotrophs. There may 

also be some freshwater inputs of nitrogen with its own isotope composition. 

 

• Flushing time of the lochs appears to affect overall δ15N values. 

 

• Algae sampled within metres show differences in nitrogen isotope composition 

that may be attributed to habitat differences e.g. stipe versus reef bound P. 

palmata. 
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• There seems to be some evidence that water motion may be influencing δ15Ν 

and δ13C abundances in Palmaria palmata. 

 

• The use of δ15N to track salmon farm nitrogen in algae is likely to give a clearer 

picture in winter when there is a bigger difference in δ15N between source and 

sink values. 

 

• These studies need to be done in conjunction with broader scale ( > 2km from 

any fish farms) geographic distributions of δ15N under a variety of wave 

exposures to better determine natural ambient variation. 
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CHAPTER 8 

NITROGEN AND FINANCIAL BUDGETS FOR 

GROWING PALMARIA PALMATA AND 

LAMINARIA SACCHARINA ADJACENT TO 

SALMON FARM CAGES. 
 

Introduction 

One of the original premises for this project was that seaweeds could be grown for their 

bioremediation potential adjacent to salmon cages. Concern has been expressed that the 

nutrients released as a result of salmon farming contribute to eutrophication of coastal 

areas possibly leading to greater prevalence of harmful algal blooms (HABs). The 

principal limiting nutrient for the growth of seaweeds in coastal waters is nitrogen 

(Lobban and Harrison 1996). In temperate waters, nitrates are renewed from deeper 

waters in the winter, often assisted by winter winds and swells. In winter, solar radiation 

is in decline, so the nutrients that are renewed are not taken up as quickly. In spring, 

when nutrients are plentiful and the days become longer, seaweed growth is at a 

maximum. As the days lengthen, and seas moderate, available nitrates are used up and 

from early summer, nitrogen again becomes limiting. 

 

Growing seaweeds adjacent to salmon farms can lead to the uptake of nitrogen-based 

nutrients, particularly ammonium, that originate from the farm, thus extending the 

growing season for the seaweed. The excess ammonium, available also during winter 

and spring may contribute to overall plant productivity, as ammonium is taken up in 

preference to nitrate by some species of seaweed. As part of this project, it has been 
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demonstrated that yields of P. palmata and L. saccharina have been enhanced when 

grown in the vicinity of fish farm cages. Sampling of plant tissues in summer has shown 

elevated nitrogen in plants sampled closer to the cages. Plants sampled close to the 

cages have also shown greater abundances of 15N which can be traced to ammonium 

originating from fish farm cages. So, for the fish farms investigated as part of this 

project, nitrogen originating from the cages has led to enhanced yields of seaweed and 

the nitrogen is at least partially fish farm-derived. 

 

Elevated ammonium levels were found in the water column 200-300 m from fish farm 

cages indicating that the influence of fish farm-derived nitrogen is not confined to areas 

close to the cages. Elevated levels of 15N were also found in plants at distances of 500+ 

m from fish farm cages. Sampling of wild P. palmata from coasts adjacent to the fish 

farms in this project suggests that fish farm nitrogen remains in the vicinity of the fish 

farm cages for durations that depend on the exchange rates of the seawater in the area. 

Enclosed water bodies with limited exchange are likely to lead to a build up of farm-

derived nitrogen and show elevated levels of soluble nitrogen in the water compared to 

sites with greater water exchange. As nitrogen stays in the vicinity of the cages for 

extended periods of time, the nitrogen budget here is not concerned so much with 

nitrogen uptake directly from farm wastes, but with nitrogen that is taken out of the 

system as a whole by the cultured seaweed.  

 

When calculating the nitrogen budget, I will consider the nitrogen for the system over 

the life cycle of a cultured salmon of two years. Two crops of P. palmata and L. 

saccharina are possible over two years. The following sections will look at the amounts 

of nitrogen taken up by the seaweed as a proportion of the total nitrogen that is put into 
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the system through fish farm operations and the commercial viability of growing P. 

palmata and L. saccharina. 

 

8.1 Nitrogen budget 

When formulating possible nitrogen budgets for growing the seaweeds there are 

constraints set by the amount of available data. As yet, little P. palmata or L. saccharina 

has been cultured in the sea in Scotland, none commercially. There has to be some 

speculation as to possible values for commercial size crops but based on the evidence 

that is available so far the variables to be considered are: 

• Optimal culture methodology including: 

o Weight of seaweed cultured per metre of longline 

o Number of longlines per unit area 

• Wet: dry weight of mass cultured seaweed 

• Percent nitrogen of dry weight for harvested seaweed. 

Browne (pers com.) has achieved yields for P. palmata of 1.85 kg wet weight m-1 of 

dropper (7 m long droppers, multiple harvests over a seven month period) from 

longlines. Browne (pers com.) claims droppers can be attached to the longlines at 15 cm 

intervals which would result in wet weight values of 86.3 kg m-1 of longline. These 

values contrast with the results suggested in this project of one harvest per year of 1 kg 

m-1. The logistics of maintaining droppers every 15 cm may not be realistic due to 

tangling issues. However, if nets could be seeded rather than lines for the droppers, then 

these yields may be attainable. 

 

The highest mean yields for a longline of L. saccharina achieved as part of this project 

were 28 kg m-1. This compares well with results obtained for other members of the 

Laminariales. The value is not as high as for a particularly high yielding strain of Alaria 
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esculenta which Kraan and Guiry  (2001) claim yielded 45 kg m-1 with other strains of 

Alararia esculenta ranging from 5 – 14 kg m-1. Edding and Tala (2003) have reported 

10 kg m-1 for Lessonia trabeculata in Chile. Holt (1984) for cultures of L. saccharina  

quotes a yield of  2.8 kg dry weight, m-1 of rope on the Isle of Man which equates to 20-

30 kg m-1 at wet: dry ratios of: 7 to 10:1. In Japan, yields of 10-30 kg m-1 wet weight are 

generally accepted for L. japonica (Tegner 1989). It should be noted also that yields 

may be dependent on the desired end product. If the alga is being grown as fodder or 

fertiliser, where quality may not be so much of an issue, maximal yields may be sought. 

If however, the alga is being grown for human consumption or chemical extraction, the 

alga would be grown to maximise desired properties rather than yield of the alga. 

 

There is little information on the recommended distance between longlines or the 

number that can be set out per unit area. In China, longlines with L. japonica appear to 

be less than 2 m apart. For this project, we will assume that 40 longlines each 100 m in 

length can be fitted into a hectare (approximately 2.5 m between each). 

 

Wet weights of seaweeds can be variable. This is not solely a function of the internal 

water content of the seaweed; it is also a function of the amount of water that is caught 

up in the alga when it is harvested. For instance, as part of this project the wet to dry 

weight ratio of P. palmata varied from 6 to 9:1. Seaweed fronds that were hand blotted 

dry had the lowest wet:dry ratio and the algae that were directly harvested lying loose 

had much entrained water. For this exercise, wet to dry weight ratios used are 7:1 for P. 

palmata and 9:1 for L. saccharina. 

 

Nitrogen contents of algae vary depending on species and the alga’s physiological 

history which is often determined by environmental conditions. For this project, percent 
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nitrogen for P. palmata varied from less than 2 % to more than 7 % while percent 

nitrogen for L. saccharina varied from 1 to 3 % of dry weight. These values are within 

the range for these species described in the literature. Normally, when harvested for 

commercial purposes, particularly when used for human consumption, the alga is 

harvested when in optimal condition and percentage nitrogen for the alga would be 

expected to be at least 3.5 % for P. palmata and 1.5 % for L. saccharina. 

 

As presented in the introduction of this thesis, for every 1000 g of salmon produced on 

1200 g of salmon feed, 46 g of dissolved nitrogen is lost to the environment mainly 

through excretion from the fish but including dissolution resulting from feed oversupply 

and breakdown of benthic waste. These figures vary depending on many factors such as 

water temperature, feeding efficiency of the farm and feed composition. Much research 

is currently being conducted on feed composition and on finding substitutes for fish 

meal. The inclusion of these alternatives will likely alter the nitrogen content of the feed 

and the resulting waste products. Fish farms have become a lot more efficient in their 

feeding practices so less feed is wasted. The percentage of nitrogen released to the 

environment may decline in the longer term as a result. 

 

The following extrapolations have been calculated for nitrogen made available from a 

500 tonne farm over the time the fish are in the water to when they are harvested. A 

feed conversion ratio of 1.2:1 is assumed, so for 500 tonnes of fish at harvest, 600 

tonnes of feed would have been used. For these 600 tonnes, 46 g in every 1200 g of feed 

will end up as dissolved nitrogen or the equivalent of 23 tonnes (see Figure 1.3). This 

reaches the sea over a period of two years and, during this time, two crops of seaweed 

are possible. See Tables 8.1 to 8.5 for extrapolated algal harvest possibilities and the 

potential resulting nitrogen uptake. 
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Palmaria palmata 

Table 8.1 Yield (kg wet weight) per metre of longline for Palmaria palmata with 
varying yields per metre of dropper and distances between droppers which are 7 m long. 

 Yield m-1 dropper 

 
 

1 kg m-1 
 

2 kg m-1 

Distance between 
droppers on longline 

cm 
45.0 30.0 15.0 45.0 30.0 15.0 

Yield per metre longline 
Kg m-1 15.6 23.3 46.7 31.1 46.7 93.3 

 

Table 8.2 Yield (kg wet weight) per longline and hectare, given 40 longlines per 
hectare and varying yields per metre of longline. 

Yield per 
metre 

longline 
(kg m-1) 

Yield 
per 

longline 
tonnes 

Yield 
per 

hectare 
tonnes 

10 1.0 40 
15 1.5 60 
25 2.5 100 
35 3.5 140 
45 4.5 180 
55 5.5 220 
65 6.5 260 
75 7.5 300 
85 8.5 340 
90 9.5 380 

 
Table 8.3 Nitrogen taken up by a one hectare seaweed farm over two years (two crops, 
for varying yields per metre of longline and nitrogen dry weight content for Palmaria 
palmata) as a percentage of dissolved nitrogen generated from a 500 tonne salmon farm 
over that period of time. Lighter shaded values represent the range of values 
encountered, the darker shaded are the most likely encountered values. 

 %N dry wt 
Yield per 

metre 
longline 
(kg m-1) 

2 3 4 5 6 7 

10 1.0 1.5 2.0 2.5 3.0 3.5 
15 1.5 2.2 3.0 3.7 4.5 5.2 
25 2.5 3.7 5.0 6.2 7.5 8.7 
35 3.5 5.2 7.0 8.7 10.4 12.2 
45 4.5 6.7 8.9 11.2 13.4 15.7 
55 5.5 8.2 10.9 13.7 16.4 19.1 
65 6.5 9.7 12.9 16.1 19.4 22.6 
75 7.5 11.2 14.9 18.6 22.4 26.1 
85 8.4 12.7 16.9 21.1 25.3 29.6 
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Laminaria saccharina  

Table 8.4 Yield (kg wet weight) per metre longline with varying yield per dropper and 
distances between droppers for Laminaria saccharina . 

 Yield per dropper 
  

25 kg 
 

50 kg 
Distance 
between 

droppers on 
longline 

(cm) 

30 70.0 110.0 30 70.0 110.0 

Yield per metre 
longline 
(kg m-1) 

83.3 35.7 22.7 333.3 166.7 111.1 

 

Table 8.5 Nitrogen taken up by a one hectare seaweed farm over two years (two crops, 
for varying yields per metre of longline and nitrogen dry weight content for Laminaria 
saccharina) as a percentage of dissolved nitrogen generated from a 500 tonne salmon 
farm over that period of time. Lighter shaded values represent the range of values 
encountered, the darker shaded are the most likely encountered values. 

 Percentage N dry weight of alga 
Laminaria 
longline 
(kg m-1) 

1 1.5 2 2.5 3 

10 0.4 0.6 0.8 1.0 1.2 
15 0.6 0.9 1.2 1.4 1.7 
25 1.0 1.4 1.9 2.4 2.9 
35 1.4 2.0 2.7 3.4 4.1 
45 1.7 2.6 3.5 4.3 5.2 
55 2.1 3.2 4.3 5.3 6.4 
65 2.5 3.8 5.0 6.3 7.5 
75 2.9 4.3 5.8 7.2 8.7 
85 3.3 4.9 6.6 8.2 9.9 

 

8.2 Financial viability 

Incentives for farmers to grow seaweed next to salmon farms might include allowances 

for growing more salmon than is currently allowed on lease sites as some of the 

nitrogen released by the farms is being taken out through harvesting seaweed. It might 

be a part of the accreditation process for organic certification as growing salmon in 

conjunction with seaweed would make the operation more environmentally sound. A 

true incentive would be if the seaweed grown was at worst cost neutral or, better, 
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returned a profit. Palmaria palmata was chosen for trials as there is a known market for 

the alga that is currently undersupplied. Laminaria saccharina was chosen not only 

because it grows well next to salmon farms but it is very similar to L. japonica which is 

grown in Japan for the edible market (Kombu) and there is currently research into 

extractives from L. saccharina which may have biomedical applications. These two 

market areas promise to show the best return for weight of product. Other more low 

value markets are as a source of alginates,  for fertilizer and as fodder to animals such as 

abalone and urchin. 

 

A search of web prices for P. palmata products has revealed a diverse range including 

Dulse flakes, granules, tablets, liquid and powder principally for use as a dietary 

supplement and just dried or smoked for edible purposes or as a tea! There are also 

cosmetic products including soap, face cream, face mask, body cream, body lotion, 

shower gel and a foaming bath. Laminaria saccharina shows a similar variety of 

products including eye gel, body balm, shampoo, conditioner and edible products. A 

cross section of prices indicates possible gross returns for these algae varying from £400 

to £9000 a wet tonne (see Table 8.6). This contrasts with the price paid by one of the 

manufacturers for raw product of 50 p per wet kilo of P. palmata : £500 per wet tonne 

(Heath, pers com). 
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Table 8.6 Prices obtained from the world wide web for Palmaria palmaria and 
Laminaria saccharina products (May 2006). 
Product Weight Weight 

Units 
UK 

pounds 
Price/dry 

tonne 
Price / 

wet 
tonne 

Producer (or 
supplier) 

Palmaria  palmata 
flakes 4 oz 3.02 £26,622 £3,803 Maine Coastal Sea 

Vegetables 
granules 1.5 oz 1.57 £36,906 £5,272 Maine Coastal Sea 

Vegetables 
Fluid 1 fl oz 0.74   Bernard Jensen 

Products 
Tablets 0.55 g 2.45 £44,514 £6,359 Bernard Jensen 

Products 
flakes 4 oz 3.97 £34,976 £4,997 Now Foods 
granules 16 oz 9.76 £21,514 £3,073 Blessed Herbs 
Whole dried 16 oz 12.10 £26,673 £3,810 Blessed Herbs 
tea 8 oz 12.72 £56,063 £8,009 TerraVita 
Whole dried & 
smoked 

17 g 0.97 £57,069 £8,153 Dolphin Sea 
Vegetables 

Whole dried 17 g 0.87 £51,027 £7,290 Dolphin Sea 
Vegetables 

Laminaria saccharina 
Whole, dried 25 g 1.94 £77,614 £8,624 Dolphin Sea 

Vegetables 
Whole, dried 40 g 2.75 £68,626 £7,625 Quality Sea 

Vegetables 
Alginates 1000 tonne 400 £400 £44.4 Nutrasweet 
  
 
The cost of cultivating the algae includes estimates for infrastructure such as materials 

for longlines, seeding the lines (see Table 8.7) and labour. It should also include 

administration components, insurance etc. As many costs as possible have been 

included in the cost estimates for the longline and seaweed farm presented here (Tables 

8.7 to 8.9) however, if the seaweed farm were to be run by a salmon farming company, 

then there may be savings brought about by sharing the use of equipment such as boats, 

anchors, administration and facilities such as laboratories etc. 
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Table 8.7.  The cost of materials required to construct a 100 m longline (2006). 
Costs for a 100 m longline   
Product Number 

required 
Cost per 

item 
Total 

Grey surface barrels 20 per 100m line £ 69.91 £ 1398.20 
Headline & anchor rope- 32mm 
polypropylene rope 

Bundle 220m £347.57 £ 347.57 

Stainless steel swivels 8 swivels £ 7.09 £ 56.72 
Thimbles for splicing rope 10 thimbles £ 6.00 £ 60.00 
Shackles 12 shackles £ 10.00 £ 120.00 
Mooring blocks 2 blocks £ 200.00 £ 400.00 

 TOTAL £ 2382.49

 

Two cost estimates are given below – an estimate per longline and an estimate per 

hectare (Tables 8.8 & 8.9). Two full time personnel would be required to set up and run 

a one hectare farm. One skilled worker would be paid at a rate of £20000 per annum and 

the other unskilled at £15000 per annum. They would seed the lines (hatchery phase, 

August to December), put the longlines in place (September – December), attach the 

seeded lines to the longlines (September – December), maintain them and then harvest 

(April – July). We will assume a relatively conservative harvest yield of 25 kg per metre 

of longline (equivalent to 2.5 tonne per longline and 100 tonne per hectare). Return for 

the alga is 50p per kilogram based on current returns for suppliers to Dolphin Seafoods 

(Heath pers com). 
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Table 8.8 Costs involved in managing one 100-m longline for culture of Palmaria 
palmata. 
Item Details Capital 

cost 
Write off 
period 
yrs 

Total cost 

Longlines One £2382.49 5 £476.498 
Labour-Seed line 2 personnel 2 week   £1346.154 
Labour-Maintain 
longline 

2 personal part time 4 
weeks equivalent 

  
£2692.308 

Boat-shared/hired  £20000 10 £2000 
Shed, air, tanks, power 
drying facilities etc 

one off cost £20000 10 
£2000 

Admin incl insurance, 
licences, marketing etc 

   
£1000 

Consumables    £400 
Maintenance    £200 
     
   TOTAL £10114.96 
     
Revenue 2.5 tonne @  50p kg fresh weight INCOME £12500.00
 

Table 8.9 Costs involved in managing a one hectare seaweed farm for culture of 
Palmaria palmata. 
Item Details Capital 

cost 
Write off 
period 

Total 
cost 

Longlines 40 £95299.60 5 £19060 
Labour 2 full time personnel   £35000 
Boat  £20000 5 £4000 
Seed line 100000 m @ 10 per km  £1000 
Shed, air, tanks, power 
drying facilities etc 

 £20000 10 £2000 

Consumables    £1000 
Admin incl insurance, 
licences, marketing etc 

   £2000 

Maintenance costs    £1000 
     
   TOTAL £65060 
     
Revenue 100 tonne @  50p kg  INCOME £50000 
 

The figures show that at these current income rate estimates, anticipated revenue may 

match costs of production. Worst case scenario suggests that revenue would have to be 

50% greater to meet costs. To ensure profitability, revenue per wet kilogram, on the 

basis of these figures needs to be in the vicinity of £0.75 – £1.00 per kg wet. 
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The figures presented here are for P. palmata. Laminaria saccharina would be a lot 

easier to produce. Ten metres of L. saccharina seeded string has the potential to give 

10,000 kilograms of L. saccharina whereas 10 m of P. palmaria seeded string will 

produce 10-20 kg of product. The spores of L. saccharina are motile making seeding 

the line a lot easier. Laminaria saccharina  brood stock is also a lot easier to collect 

than P. palmata. Laminaria saccharina is also more robust and thus more likely to 

succeed. Savings in producing L. saccharina are likely to equate to at least 10% of the 

above costs. 

 

Discussion 

While the cost differential between farm gate price and retail would seem to be 

considerable (ranging from 6:1 to 18:1), there is also a considerable price differential 

between various product types. Laminaria saccharina is a promising product based on 

the above prices either as an edible product or for biomedical or pharmaceutical 

applications. However ISP (Internationally Specialised Products), Girvan, Scotland is 

offering only ~£400 per dry tonne of Ascophyllum nodosum and L. hyperborea for 

alginates (~£50 per wet tonne, Rodger pers com, 2005). Similar price differentials may 

be expected for fertilizer and fodder applications. 

 

Productivity rates for cultivated red algae depend on the culture type, whether longline, 

benthic, tank and either intertidal or subtidal. There are currently no red algae grown 

commercially on subtidal longlines. In Chile recently however, Avila et al. (1999) 

presented results of studies where frames with nylon and polyfilament of different 

diameters were seeded in the laboratory with Sarcothalia crispata and out-planted to the 

sea. These authors indicated that a total output of 140 g dry weight m-1 can be obtained 

over the growth period November–May. In Ireland a farm cultivating Asparagopsis in 



 290

the late 1990s, using a longline system, yielded one tonne wet weight of the plant per 

hectare (Kraan and Guiry 2006). For subtidal areas in southern Chile, it has been 

established that Gracilaria production can reach 91–149 tons ha-1 year-1 (Westermeier 

et al. 1991). In contrast, intertidal systems established at the same latitude are less 

productive, with biomass levels never exceeding 72 tonnes ha-1 year-1 (Buschmann et al. 

1995). In China, Gracilaria is also grown intertidally and yields for this alga are quoted 

as 3 tonne dry weight per hectare (Wu and Pang 2006).  Eucheuma is cultivated on lines 

in the intertidal. Productivity for  Eucheuma in the Phillipines and Malaysia has been 

quoted at up 80 tonnes wet weight or 5 – 20 tonnes dry weight per hectare (Anon 2006; 

Neish 2006; Trono and Montano 2006).  Eucheuma yields per hectare in India are 10 

tonne dry weight per hectare (Anon 2006).  For tanks on land Neori et al. (2006) claim 

500 tonne wet weight per hectare for Ulva, and Molloy (2006) 24 tonne dry weight per 

hectare for Gracilaria in Namibia.  

 

Quoted rates for longline productivity for Laminariales include 40-70 tonnes for L. 

saccharina in Russia and 70-80 tonnes wet weight per hectare in the Sea of Japan for 

Costaria (Selivanova et al. 2006). Chopin and Ugarte (2006) claim 1.5 tonne dry weight 

per hectare for L. saccharina  and Macrocystis integrifolia at L. Druehl’s seaweed farm 

in British Columbia. 

 

Productivity levels obtained here for P. palmata and L. saccharina  are within quoted 

yields for seaweeds found elsewhere for seaweed culture systems. Subtidal yields for 

seaweed culture appear to be greater than intertidal but not as high as for tank based 

culture. A maximum of 100 tonnes wet weight per hectare for P. palmata or L. 

saccharina would seem to be achievable. At these maximal extrapolated yields, a 

hectare of P. palmata may absorb as much as 30% of the nitrogen output from a 500 
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tonne salmon farm (340 tonnes wet weight P. palmata per hectare, 7 % dry weight 

nitrogen). More conservative estimates range from 3.2 to 11.2 % (up to 180 tonnes wet 

weight per hectare, 5 % dry weight nitrogen).  Laminaria saccharina might absorb as 

much as 10 % (340 tonnes wet weight, 3% nitrogen dry weight) but more conservative 

estimates are up to 4.3 % (220 tonnes wet weight, 2 % nitrogen dry weight). 

 

At yields of 100 tonnes wet weight per hectare or 2.5 tonnes wet weight per longline, 

growing seaweed approaches cost neutrality at current prices if the algae are to be used 

for edible or biomedical applications. Increasing seaweed yields through growing them 

adjacent to salmon farms also enhances profitability while utilising what would 

otherwise be a waste product (salmon cage nutrient stream) and a potential 

environmental problem. 
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CHAPTER 9 

CONCLUSIONS 
 

9.1 Nutrients in the vicinity of salmon fish farm cages. 

The greater proportion of nitrogen excreted by teleost fish such as Atlantic salmon 

(Salmo salar) is as ammonium (approximately 90%). The remainder consists principally 

of urea. Analysis for excess nutrients in this project therefore concentrated on 

ammonium as most of the DIN originating from salmon cages is found in this form 

(Petrell et al. 1993). The results of this study showed that in the vicinity of fish cages 

holding approximately 300 tonnes of salmon, ammonium levels are consistently 

elevated by 2-3 μM over ambient at distances of at least 50 m from the cages in the 

direction of currents and leeward side of fish cages. Surveys further away from the 

cages showed elevated levels of ammonium of approximately 1 μM at 200-300 m in the 

direction of currents. These levels are low relative to ambient plant available DIN 

(mainly NO3
-) from November to March of 6-10 μM, but are likely to be the principal 

source of nitrogen for the remainder of the year and are elevated for most of the daylight 

hours from 2-4 h after the initiation of daily feeding to 2-4 h after the finish. 

 

Seasonal monitoring of nutrient concentrations of seawater adjacent to the salmon cages 

showed only a small percentage of readings that exceeded Ecological Quality 

Objectives related to Eutrophication  (EcoQOs) set by OSPAR: ‘Convention for the 

Protection of the Marine Environment of the North east Atlantic’(OSPAR 2005). These 

specifications include: 



 293

1/ Winter DIN and/or DIP should remain below a justified salinity-related and/or 

area-specific % deviation from background not exceeding 50%. 

2/ The Redfield ratio (N:P ratio) should not exceed 25.  

The readings that exceeded guidelines were either very close to the cages or were taken 

in summer. This is in accordance with the findings of recent reviews regarding 

enhanced nutrient levels arising from aquaculture in Scotland (Tett and Edwards 2002; 

Rydberg et al. 2003; Smayda 2006). 

 

Nitrogen isotope evidence indicates that fish farm-derived nitrogen is found in algae 

growing adjacent to cages and may be found in plants more than 1 km from source. 

These findings agree with a similar study by Gubbins (2003) and confirms concerns 

expressed in a review regarding nutrient loadings in Scottish waters from fish farms by 

Rydberg et al. (2003). Rydberg et al. (2003) questioned the capacity of current 

regulatory requirements regarding fish farms to determine problem areas. The current 

regulations primarily address benthic impacts. There is also consideration regarding the 

levels of nutrients going into the lochs from fish farms, but there are still shortcomings 

regarding the longer term effects of fish farms and their contribution to eutrophication 

of the lochs as a whole. 

 

Whereas local effects of fish farming, i.e. sedimentation and recovery underneath cages, 

have been subject to comprehensive studies, expected broader scale long term effects in 

water bodies with fish farms, such as changing nutrient and oxygen fluxes, have yet to 

be followed up. Larger fish farms are carrying out monitoring programmes which are 

centred on the site, rather than the wider environment, and do not cover the long-term 

impacts. 
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This project has also demonstrated the detectable enhancement of nutrients in the water 

column at distances of more than 200-300 m from the farm cages in the direction of 

currents. Water movements within bays can also lead to the concentration of nutrients in 

more quiescent areas of the bays. Even on more exposed coasts, concentrations of 

nutrients can occur in quieter sections of the coast (supported from modelling of coastal 

water movement patterns; Gillibrand pers com). Evidence for build-up of nutrients in 

such areas was found in this project, at the sheltered site at the head of Badcall Bay 

where elevated ammonium concentrations were recorded regularly. 

  

Many reports from European coastal areas, particularly in the Baltic Sea, have 

demonstrated that zoobenthos (an important food for fish) have been eliminated as a 

result of oxygen deficiency resulting from eutrophication (anthropogenic in origin but 

not necessarily fish farms). In those areas, areas of ‘dead bottom’ are often encountered. 

Despite great efforts that have been made to halt the eutrophication process (Ambio 

1990; Ambio 2000), ‘dead bottom’ continues to increase deeper waters and also in 

many archipelagos (Gyllenhammar and Hakanson 2005). Monitoring for such impacted 

areas should be considered in the broader vicinity of fish farm lease areas. 

 

Rydberg et al. (2003) have suggested that the Scottish ECE (Environmental 

Concentration Enhancements) model, used for predicting hyper-nutrification and for 

salmon farming consents, must be improved to include internal mixing. Taking internal 

mixing into account will result in longer, in some cases much longer, flushing times for 

water bodies. In many cases, it will take several years before a balance between input 

and output is established at the sediment-water interface, presuming that the farming is 

going on elsewhere. Parts of the inorganic nutrient waste from the farms will be stored 

in the sediments, but the rest is returned to the water column, eventually showing up as 
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larger internal nutrient recirculation and potentially as excess winter nutrient 

concentrations (Rydberg et al. 2003, Stigebrandt 1999). 

 

9.2 Algae cultured adjacent to salmon farm cages 

This study has shown that it is possible to grow seaweeds adjacent to fish farms and that 

yields of two crops from one hectare may absorb the equivalent of up to 30% of the 

soluble waste emissions from culturing 300 tonnes of salmon. Yields of Palmaria 

palmata and Laminaria saccharina were enhanced when grown adjacent to salmon 

cages. If these algae are to be grown for the edible market, however, questions must be 

asked about the possible impact of chemicals that are added for salmon culture or 

particulate matter, such as that resulting from faeces, on the quality of the algae. 

Preliminary research has indicated that Slice (emamectin benzoate) used for sea lice 

treatments, cannot be detected in populations of Palmaria palmata grown adjacent to 

cages where treatments have been taking place (pers. com. Julie Graham, PhD Student, 

ERI Environmental Research Institute, Thurso). At Loch Duart farms, antifoulants are 

not used on nets so heavy metals are unlikely to be an issue, but they may be an issue at 

farms where nets are so treated. It was often noted in this project that seaweeds very 

close (<20 m) to the cages, Palmaria more than Laminaria, were covered in particulate 

matter and ‘goo’ probably consisting of feed and faecal particles. The effect of these on 

the suitability of the product if used for edible purposes would have to be addressed. 

 

The results of the nitrogen isotope study showed that the influence of fish farms may be 

loch wide. While obvious impacts arising from a fish farm are limited to the benthos to 

a maximum of 50 m from the centre of deposition around the cages, and nutrients may 

be detected to 200 m from the cages, longer term impacts are not as obvious and may be 
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further reaching. Nutrients and organic matter arising from enhanced production may be 

accumulating in more sheltered areas of bays with fish farms. Culturing algae would 

lead to a net extraction of nitrogen from the system and algae would not have to be 

grown in the immediate vicinity of the fish farms to have a bioremediation effect. The 

farms could be located in areas that are more suitable for the growth of the alga. In the 

case of Palmaria palmata, for instance, this might be where there is more water motion 

such as in tidal current areas. A further advantage would be that the algae would not be 

exposed directly to chemicals and wastes that might originate from the farm, thus 

making them more suitable as food. There is also the possibility of growing the algae on 

fallow sites, thereby enhancing the utilisation of fish farm sites whilst providing a 

bioremediation function. 

 

Palmaria palmata was trialled in this project as there is a market for this alga in 

Northern Ireland and demand cannot currently be met by supply (Browne 2001). 

Cultivation of this alga has received much recent interest for this reason (Browne 2001; 

Le Gall et al. 2004; Pang and Lüning 2004; Matos et al. 2006; Pang and Lüning 2006). 

Laminaria saccharina was also trialled as it grows quickly, has been shown to grow 

well adjacent to salmon farm cages in other studies (Subandar et al. 1993; Ahn et al. 

1998), is easy to cultivate, has already been cultivated in the United Kingdom (Holt 

1984; Dawes 1987), has a large biomass and has some potential (although as yet 

untested) economic value (Cumashi et al. unpubl.). 

 

Commercial scale culturing trials of Palmaria palmata were conducted and in the 

process, advances were made in production efficiencies, particularly in seeding lines at 

the hatchery stage to be deployed at sea. Improving production efficiencies enhances the 

prospects of making culturing of the algae economically viable. Multiples of 100 m 
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lengths of line were seeded in spawning sessions as distinct from multiples of 10 m as 

had been reported previously (Browne 2001). Avenues for further improvement were 

suggested including investigating the analogous Japanese nori culture and adapting 

some of the methodology including the use of nets for seeding rather than lines. Using 

the ‘tumble’ process for spore release as originally developed by Pang and Lüning  

(2006) meant that greater control was achieved over spore settlement densities, spore 

hygiene and viability with potentially longer term release and greater numbers of spores 

per unit area  of P. palmata frond possible. 

 

Taking the concept of growing seaweed into the field, and trialling culture of the algae 

adjacent to fish farm cages, brought up issues that must be confronted before cultivation 

of algae in Scottish coastal waters can be successful. Of primary concern, was the 

occurrence of epiphytes. These included algal epiphytes that bloom in spring and early 

summer, particularly close to the cages, and larval epiphytic fauna such as mussels and 

bryozoans that become most evident in late summer, fouling crops. These epiphytes 

contaminate the crops, compromising quality and are an issue for edible crops and algae 

for extractives where quality and presentation are often critical. Most of the salmon 

farms were in relatively sheltered waters where these problems are exacerbated. Areas 

where there is more water motion may not be as subject to colonisation by these 

contaminants. In the more sheltered waters, to avoid the problem of epiphytes, one crop 

only would be possible per year. In order to do this, seeded lines should be in the water 

as soon as possible after the summer settlement of epifauna. The seeded crops will then 

be at maximal size before harvest in late spring of the following year. Harvest may also 

be possible over a period of time extending supply of fresh product to the markets. 
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A further issue for quality of the crops was found in bleaching of the Palmaria palmata 

around June. Ideally, unless a solution is found for this problem, crops should be 

harvested before the onset of bleaching. Possible solutions may be lowering the seeded 

lines in the water column thus exposing the crop to cooler waters with higher nutrient 

levels at depth, but also taking them out of the range of the high light environment in 

the shallows. Another possible solution may be to shade the plants. This could be done 

with a shade material but it may also be possible to have a multiple seaweed crop and 

grow an alga such as Laminaria spp. or Alaria esculenta above the Palmaria thus 

shading it. 

 

While the project has advanced the methodology for cultivating Palmaria palmata on a 

commercial scale, growing this species close to the cages is not always optimal, 

especially when water flow is low. On occasion, discoloration was noted for plants 

grown close to the cages, where they can also be subject to colonisation by epiphytic 

algae. While increase in yield of the plants was demonstrated, this was only in the 

immediate vicinity of cages (< 50 m). Although algae grown at greater distances from 

cages are likely to take up farm-derived nitrogen, given the lower amounts relative to 

ambient it would seem unlikely that the extra nutrients would be sufficient to make a 

significant difference to yields. 

 

In contrast, Laminaria saccharina grows very well close to salmon cages and appears to 

benefit from uptake of farm nutrients. Questions have been raised, however, concerning 

the potential for commercialisation of Laminaria saccharina for the edible market. 

Laminaria saccharina is known to have high levels of iodine (2789-5277 μg/g, CEVA 

2004: Centre d'Etude et de Valorisation des Algues, www.ceva.fr, Teas unpubl. report). 

The Recommended Dietary Allowance (RDA) for adult men and women is 150 μg d-1. 
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The median intake of iodine from food in the United States is approximately 240 to 300 

μg d-1 for men and 190 to 210 μg d-1 for women. The Tolerable Upper Intake Level 

(UL) for adults is 1,100 μg d-1 (1.1 mg d-1), a value based on serum thyroptropin 

concentration in response to varying levels of ingested iodine. (US Institute of Medicine 

2001) . 

 

In France the use of L. saccharina as a foodstuff is restricted to a condiment (CEVA 

pers com). Alaria esculenta is closely related to Laminaria saccharina, is known as an 

edible alga (Kraan and Guiry 2006),  grows well on Loch Duart salmon cage structures 

(Robinson pers com) and thus may be a better option for cultivation next to salmon 

cages (166 μg g-1 iodine, Teas unpubl report, MCSV 2005: 

http://www.seaveg.com/chart.html ). Alaria esculenta  has been the subject of research 

for longline culture in Ireland with good results (Kraan and Guiry 2001).  Other algae 

for consideration are Himanthalia elongata (edible, Kraan and Guiry 2006),  Porphyra 

spp. (edible, Chopin et al. 1999; edible, Carmona et al. 2006) and the Falkenbergia 

phase of  Asparagopsis armata (chemical extractives ,Schuenhoff et al. 2006). 

 

Possible seaweed species for growing in Scotland can be divided into those for: 1/ 

human food; 2/ chemical extractives (including cosmetics and thalassotherapy); 3/ 

fertilizer; and 4/ animal fodder. An economic evaluation as part of this project suggested 

that, for Palmaria palmata, a price of £1 per kilogram wet weight rather than the current 

price of  50p per kilogram would make the alga a more attractive option for cultivation. 

 

Many macroalgal species used for human food and chemical extractives are obscure 

species with unusual life cycles that often require specific environmental condition for 

optimal quality either for taste and appearance or for maximal return of the required 
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chemical. Growing these algae is often more costly; often, however, the return is 

greater. 

 

The Scottish seaweed industry has been briefly reviewed recently by  Milliken and 

Bridgewater  (2001) and worldwide usage of seaweeds has been reviewed by Mc Hugh 

(2003). Some edible algae that are suitable for culture in Scotland have been covered 

already in this chapter and other species include: Ulva, Laurencia obtusa and Chorda 

filum (Kenicer et al. 2000). Reviews of chemical extractives from seaweeds have been 

conducted recently by Smit (2004) and Fitton (2003). Smit (2004) claims that despite 

the intense research effort by academic and corporate institutions, very few products 

with real potential have been identified or developed. Substances that currently receive 

most attention from pharmaceutical companies for use in drug development, or from 

researchers in the field of medicine-related research include: sulphated polysaccharides 

as antiviral substances, halogenated furanones from Delisea pulchra as antifouling 

compounds, and kahalalide F from a species of Bryopsis as a possible treatment for lung 

cancer, tumours and AIDS. Other substances such as macroalgal lectins, fucoidans, 

kainoids and aplysiatoxins are routinely used in biomedical research and a multitude of 

other substances have known biological activities. As part of this project, Laminaria 

saccharina was investigated for fucoidans (Cumashi et al. unpubl.). Fucoidans are a 

group of highly sulphated polysaccharides of brown seaweeds and echinoderms. They 

are characterized by different types of physiological activities including anticoagulant, 

antiviral, anti-inflammatory and others. The properties of these products have been 

reviewed by Berteau and Mulloy (2003). 

 

Some algae are easier and thus cheaper to grow per kilogram. The larger brown kelps 

fall into this category. Algae used for fertiliser and as feed for animals such as sea 
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urchins and abalone (Cook et al. 1998; Cook et al. 2000; Kelly et al. 2001) would need 

to be cheap to produce as their viability as a commercial option is dependent on 

producing them at a very low price. One advantage in producing algae for fertiliser and 

feed for animals is that the quality in terms of content and appearance is not so critical 

making their production more cost effective. The larger brown algae such as Laminaria 

spp. are particularly well suited in this regard. In Japan and Korea, samples of algae that 

are not of sufficient quality for edible purposes, such as Undaria pinnatifida, are used 

for feeding urchin and abalone. Growing the algae for both purposes (edible ad animal 

feed) optimises economic returns. 

 

Integrated aquaculture or polyculture, consisting of growing sea urchins or oysters, 

scallops, seaweed and salmon, is currently being investigated at SAMS (Scottish 

Association) as part of the MERMAIDS (Multi-trophic culture for Environmental 

Remediation) and the AAAG (Atlantic Arc Aquaculture Group) projects. By growing 

sea urchins (or even abalone) in conjunction with the salmon and seaweeds, there are 

multiple benefits in terms of the costs. The sea urchins feed on excess feed and faeces 

from the salmon cages, the seaweed benefits from the excess nutrients also emanating 

from the cages and the seaweed can be used to feed the sea urchins and abalone. 

 

At present, there are no seaweeds that are being cultured for commercial purposes in 

Scotland. To be considered for cultivation adjacent to fish cages, seaweeds must be 

economically viable in their own right. This would suggest that, without further 

incentives, farmers are unlikely to take up growing seaweeds solely for the purpose of 

taking up excess nutrients. Further research must be directed at developing a 

commercially viable seaweed crop which should be profitable without other incentives. 
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This would include improving marketing opportunities for current commercial species 

and developing markets for other prospective species. 

 

If research into larger scale, longer term impacts of salmon farms in Scottish waters 

does indicate deleterious effects which have knock-on impacts to fisheries and the 

natural environment (perhaps for example, by impacting on biodiversity in quiescent 

areas of lochs), then perhaps the regulatory authorities should consider giving incentives 

to salmon farmers to grow extractive species that have some bioremediation potential 

such as sea urchins and seaweed. As there do seem to be some uncertainty about the 

potential impacts of the fish farms, perhaps the precautionary principle should be 

applied. Incentives to consider integrated aquaculture may be to keep current fish 

biomass consents or risk further controls such as lower biomass limits in the longer term 

if the salmon farmers cannot demonstrate that they are extracting farm wastes from the 

environment. This would be irrespective of any changes that may come along in regard 

to feed technology that lessen the release of soluble nutrients to the environment. 

 

One disincentive for salmon farmers becoming involved in growing other crops is that it 

is a lot easier and more cost effective to concentrate on one species. While costs for 

growing seaweed or sea urchins may be saved due to shared infrastructure, there are 

extra costs in terms of extra expertise and time required. There is also the matter of 

prioritization of species for maximising quality and market supply of both. For 

Palmaria palmata, this is not so much of a problem as it is likely that the demand for 

the alga (optimal harvest time) occurs after the busy harvest time for salmon. One way 

around this for other species of seaweed, may be to have a central seaweed (or/and 

urchin) based company (-ies) that is contracted to grow seaweed at salmon farm sites 

across a number of different fish farming companies. This would make seed production 
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much more cost effective and would centralise expertisewhich in turn would accelerate 

advancements in technology. 

 

From a regulatory point of view, if there is a commercially viable seaweed, then it is a 

lot easier to grant lease areas for the crop within the currently defined salmon farm lease 

areas than the current situation where sperate areas would have to be considered further 

locking away and affecting coastal waters. This would concentrate aquaculture activities 

within currently accepted areas. However, if it is considered that growing the crop 

somewhere in the vicinity of the fish farms, such as within same loch, would have 

bioremediation advantages, then some extension to leases, only for seaweed crops 

would have to be planned for. 

 

Currently, organic certification for salmon farms is in a process of constant review due 

to the current levels of interest by the general public and the very recent application of 

the organic movement’s principles to the marine environment. Both of the UK-based 

organisations that certify aquaculture businesses as organic, the Soil Association and the 

Organic Food Federation, are attracted to the idea of integrated aquaculture as it helps 

meet their ideals by adding an element of nutrient recycling. In fact one certifier, the 

Soil Association, is even considering that demonstrating an element of nutrient 

recycling should become a prerequisite of an organic salmon farming operation. Given 

the public interest in this area, adoption of the concept of integrated aquaculture and 

organic certification has a double benefit in terms of care for the environment and 

marketing advantages. 

 

On the broader scale, fish farms are not the only contributors to nutrient enhancement in 

the Scottish coastal environment, although they do make up a significant proportion. In 
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the year 2000, the nitrogen contribution from fish farms possibly matched the nitrogen 

arising from the total sewage input from the population of Scotland (MacGarvin 2000). 

In north west Scotland, where most of the fish farms are concentrated, this is likely to 

have occurred as long as 20 years ago (Tett and Edwards 2002). Perhaps growing 

seaweed should be considered and encouraged on a larger scale to ameliorate sewage 

impacts? This would be more suitable for seaweed grown for fertilizers or perhaps for 

biofuel production (for example see Horn et al. 2000;  Raiko et al. 2003). 

 

The most economical means of culturing seaweed is to rely on natural settlement. To 

obtain high tonnages of seaweed easily, longlines can be deployed over great areas in 

late summer – autumn. These pick up natural settlement of spores of multiple species 

from the water column as the season progresses. By hanging suitable fertile seaweeds 

such as Laminariales at regular intervals on the longlines or by deploying lines/strings 

to be seeded over suitable seaweed beds to maximise settlement of desired species at 

times of maximum fertility before deploying on longlines, the settlement of desired 

species can be encouraged. This reduces the cost of seeding lines. However, it is only 

suitable when the species required for culturing is not critical such as for fertilisers, for 

biofuel production or for feed to animal species. 

 

In summary, this research has shown that seaweeds have the potential to remove 

nitrogen from the environment in the vicinity of fish farm cages thus having a 

bioremediation value. However, until the technology and/or their commercial 

value/pricing changes, this may not be economically viable.The main avenues of future 

research should focus on developing, marketing and promoting seaweed products to 

establish prices that would qualify culturing seaweeds to be financially viable in their 

own right. If an environmental cost can be attributed to the impact of the farm wastes 



 305

and if these are high or even potentially high, then incentives could be offered to salmon 

farmers and potential seaweed growers to further develop seaweed crops. The current 

returns from seaweed crops are close to making a seaweed farm financially viable. 

Regulatory authorities might consider encouraging a pilot scale operation that would 

produce commercial seaweeds and lead to increased demand, better returns and 

efficiencies from scale. 

 

Scotland has a long history of seaweed utilisation going back to the seventeenth and 

eighteenth centuries (Thomson 1983; Kain and Dawes 1998; Kenicer et al. 2000; 

Milliken and Bridgewater 2001). Perhaps, by stimulating the beginning of a new 

industry that provides new products and is of benefit to the environment, the tradition of 

innovation in the area of seaweed utilisation will be upheld in Scotland. 
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APPENDIX 1 

ENVIRONMENTAL DATA MEASURED ON SITE 

FOR THE LOCH DUART LTD. LEASE SITES. 

6

8

10

12

14

16

01/01/03 02/03/03 01/05/03 30/06/03 29/08/03 28/10/03 27/12/03
Date

Te
m

pe
ra

tu
re

7 per. Mov. Avg.
(Calbha)

7 per. Mov. Avg.
(Laxford)

7 per. Mov. Avg.
(Badcall)

 
Figure A1.1 Temperature variation at the three Loch Duart Ltd. lease sites, Calbha, 
Laxford and Badcall for 2003. Temperature measurements taken by staff on walkways  
at  4 m depth approximately daily. Lines follow seven day averages. 
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Figure A1.2 Temperature variation at the three Loch Duart Ltd. lease sites, Calbha, 
Laxford and Badcall for 2004. Temperature measurements taken by staff on walkways  
at  4 m depth approximately daily. Lines follow seven day averages. 
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Figure A1.3 Temperature variation at the three Loch Duart Ltd. lease sites, Calbha, 
Laxford and Badcall for 2005. Temperature measurements taken by staff on walkways  
at  4 m depth approximately daily. Lines follow seven day averages. 
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Figure A1.4 Near surface current speed 130 m SE of  ‘F’ walkway, 3/7/2003 to 
27/8/2003, ,. max 20.4 av 3.1 km/h. 
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Figure A1.5 Near surface cumulative distance. 3/7/2003 to 27/8/2003. Axis units are 
kilometres. 



 309

-10

-8

-6

-4

-2

0

2

4

6

8

10

-15 -10 -5 0 5 10

 
Figure A1.6 Near bottom current speed in 18 m water at low tide 130 m SE of  ‘F’ 
walkway, 3/7/2003 to 27/8/2003, ,. max 20.4 av 3.1 km/h. 
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Figure A1.7  Near bottom cumulative distance. 3/7/2003 to 27/8/2003. Axis units are 
kilometres. 
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Figure A1.8 Current meter (715) approximately 5m below surface at low tide, Cabha 
Bay, D walkway. Speed, max 9.7, Av 2.19 km/h. 
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Figure A1.9 Current meter (715) approximately 5m below surface at low tide, Calbha 
Bay, D walkway, approximately 25 m SW of cages. 4/5/05 to 16/6/05. Cumulative 
distance axis units are kilometers. 
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Figure A1.10 Current meter (716) approx 10m below surface at low tide, Cabha Bay, D 
walkway, 25 m SW of cages. Speed, max 6.3 Av 1.36 km/h 
 

NORTH

-5

0

5

10

15

-5 0 5 10 15

EAST

 
Figure A1.11 Current meter (716) approx 10m below surface at low tide, Cabha Bay, D 
walkway, 25 m SW of cages. 4/5/05 to 16/6/05. Cumulative distance, axis units are 
kilometres. 
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Figure A1.12 Near surface at low tide, Cabha Bay, D walkway, approx 50m north of 
cages. Speed, max 7.1 Av 2.15 km/h. 
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Figure A1.13 Near surface at low tide, Cabha Bay, D walkway approx 50m north of 
cages.. 4/5/05 to 16/6/05. Distance, axis units are kilometres. 
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Figure A1.14 Cabha Bay, D walkway approx 50 m north of cages 10m from surface at 
low tide.Speed,  Max 10.5, av. 1.46 km/h. 
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Figure A1.15  Cabha Bay, D walkway approx 50 m north of cage 10m from surface at 
low tide. Distance, axis units are kilometres. 
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Figure A1.16  Temperature profiles for Badcall & Calbha sites, 25/2/05. See Figure 2.1 
(Chapter 2) for site locations 
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Figure A1.17 Salinity profiles for Badcall & Calbha sites, 25/2/05. See Figure 2.1 
(Chapter 2) for site locations 
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Figure A1.18 Temperature profiles for Badcall & Calbha sites, 29-30 March 2005. See 
Figure 2.1 (Chapter 2) for site locations 
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Figure A1.19 Salinity profiles for Badcall & Calbha sites, 29-30 March 2005. See 
Figure 2.1 (Chapter 2) for site locations 
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