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Abstract 14	
The domestication process of sugar kelp in the Northeast U.S. was initiated by selective 15	
breeding two years ago. In this study, we will demonstrate how obstacles for accelerated 16	
genetic gain can be assessed using simulation approaches that inform resource allocation 17	
decisions in our research. Thus far, we have used 140 wild sporophytes (SPs) that were 18	
sampled from the northern Gulf of Maine (GOM) to southern New England (SNE). From 19	
these SPs, we sampled gametophytes (GPs) and made and evaluated over 600 progeny 20	
SPs from crosses among the GPs. The biphasic life cycle of kelp gives a great advantage 21	
in selective breeding as we can potentially select both on the SPs and GPs. However, 22	
several obstacles exist, such as the amount of time it takes to complete a breeding cycle, 23	
the number of GPs that can be maintained in the lab, and whether positive selection can 24	
be conducted on farm tested SPs. Using the GOM population characteristics for 25	
heritability and effective population size, we simulated a founder population of 1000 26	
individuals and evaluated the impact of overcoming these obstacles on genetic gain. Our 27	
results showed that key factors to improve current genetic gain rely mainly on our ability 28	
to induce reproduction of the best farm-tested SPs, and to accelerate the clonal vegetative 29	
growth of released GPs so that enough GP biomass is ready for making crosses by the 30	
next growing season. Overcoming these challenges could improve rates of genetic gain 31	
more than two-fold. Future research should focus on conditions favorable for inducing 32	
spring and early summer reproduction, and increasing the amount of GP tissue available 33	
in time to make fall crosses. 34	
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Introduction 94	
  95	

Wild kelp forests in the ocean provide important habitat and ecosystem services. 96	
They have also been an important source of human food. Due to climate change and other 97	
anthropogenic factors, global kelp populations have faced a drastic decline (Moy and 98	
Christie 2012, Wernberg et al. 2019, Bricknell et al. 2020). Now kelp farming is largely 99	
replacing wild harvests: over 30 million metric tons of seaweed were harvested in 2018, 100	
of which 97% came from farms (FAO, 2020). The import of seaweed raw materials to the 101	
U.S. in 2016 was more than 10,000 metric tons (over $73 million, National Marine 102	
Fisheries Service Office of Science and Technology 2016; Piconi et al. 2020). Uses 103	
include human food, animal feed supplements, and pharmaceutical and cosmetic products 104	
(Kim et al. 2015; Kim et al. 2017; Kim et al. 2019; Marine Biotech 2015; Schiener et al. 105	
2015; Wang et al. 2020; Yarish et al. 2017). Growing kelp biomass in the ocean offers a 106	
unique opportunity to avoid many of the challenges associated with terrestrial agriculture 107	
systems, particularly the growing competition for arable land and freshwater resources. In 108	
order to meet the demand of our growing population by 2050, we must use the oceans 109	
responsibly to build a thriving seaweed farming industry for the production of carbon-110	
neutral fuels, biochemicals, animal feed, and food (Capron et al. 2020; Kurt et al. 2020). 111	

Kelp cultivation has been established for over 60 years in Asian countries. Most 112	
recently, there is growing interest in macroalgal cultivation in Europe, South America, 113	
and North America (Buschmann et al. 2017; Grebe et al. 2019; Kim et al. 2019; Geocke 114	
et al. 2020). Specifically, there are efforts to selectively breed kelp for large-scale food 115	
and bioenergy production (Bjerregaard et al. 2016; Hwang et al. 2019; Valero et al. 2017; 116	
Geocke et al. 2020) as well as increased demand for germplasm banking to support future 117	
cultivation (Barrento et al. 2016; Wade et al. 2020). The U.S. Department of Energy 118	
Advanced Research Projects Agency-Energy (ARPA-E) initiated the Macroalgae 119	
Research Inspiring Novel Energy Resources (MARINER) program in order to develop 120	
new cultivation, management, and breeding technologies that enable cost-efficient 121	
seaweed farming in the large U.S. Exclusive Economic Zone and grow into a global 122	
leader in the production of seaweeds. The domestication and breeding of sugar kelp, 123	
however, is just beginning.  124	

Kelp has a bi-phasic life cycle (Redmond et al. 2014), which provides unique 125	
opportunities for selective breeding since breeders could potentially exert selection 126	
pressure on both phases within a single growing cycle (Peteiro et al. 2016, Wade et al. 127	
2020). Genetic markers have been used in crop breeding for some time, primarily 128	
exploiting large marker-trait associations (Bernardo 2016). In the last decade, genomic 129	
selection (GS) has been adapted by numerous breeding programs due to its ability in 130	
predicting breeding values that are immediately used for making selections (Meuwissen 131	
et al. 2001, Jannink et al. 2010). The use of genomic selection in terrestrial agriculture 132	
and aquaculture breeding has a track record of improving gains by ~10% per generation 133	
(Gjedrem et al. 2012). Genomic selection uses a training population with both phenotypic 134	
and genotypic information to build a model, which then can be used to predict the 135	
genomic estimated breeding value (GEBV) of individuals that are related to the training 136	
population. As the development of genetic markers and genotyping individuals becomes 137	
less costly compared to phenotyping, GS allows breeders to make selections more 138	
efficiently (Heffner et al. 2010). 139	

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2021. ; https://doi.org/10.1101/2021.01.21.427651doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427651
http://creativecommons.org/licenses/by-nc/4.0/


In 2018, a kelp breeding program was initiated by collecting sporophytes (SPs) 140	
from the Gulf of Maine (GOM) to southern New England (SNE). Our primary breeding 141	
goal is to improve biomass-related traits including wet weight and percentage dry weight, 142	
and to reduce biomass ash content. From the wild-sampled SPs, over 700 uniclonal 143	
gametophytes (GPs) were isolated and over 200 of these were grown to sufficient 144	
biomass for genotyping and for crossing to create progeny SPs, which were planted and 145	
evaluated on nearshore kelp farms. Within a cross, each SP has the exact same genotype, 146	
resulting in genetically uniform one-meter line "plots" in the farm. A detailed description 147	
is reported in Umanzor et al (2020). In the spring of 2019, the farm-grown SPs were 148	
measured, and samples were collected to culture in the lab and induce GPs for the next 149	
crossing, planting and harvesting cycle. In our current scheme, we use GS to predict the 150	
breeding value of gametophytes, select the best ones, and prioritize crossing these GPs to 151	
create new sporophytes. Kelp’s biphasic life cycle (Fig. 1a) allows us to potentially exert 152	
tremendous selection pressure on GPs, as we aim to predict combining abilities of 153	
parental GPs using the SP performance. This will empower us to prioritize crosses and 154	
evaluate SPs that are more likely to become high-performing varieties. 155	

Given our experience, we now have a better understanding of significant obstacles 156	
to our breeding effort and the investments that might be exerted to overcome those 157	
obstacles. To guide the research effort objectively, the extent of accelerated gain from 158	
different possible investments and interventions needs to be assessed via simulation. 159	
These simulations will help early kelp breeding efforts utilize limited research and 160	
development investment for maximal breeding efficiency and genetic gain (the 161	
improvement in population genetic mean). 162	

We have identified four obstacles. First, we can collect sorus tissue in the spring 163	
from farm-grown SPs and express meiospores that can be individually isolated to grow 164	
out to become clonal GPs. However, thus far, we have not routinely succeeded in 165	
producing enough clonal GP biomass to make crosses that can generate hundreds of SPs 166	
by the fall of the same year. Instead of completing a breeding cycle in one year, our 167	
breeding program started with a two year cycle. This slow growth of the clonal GPs 168	
represents Obstacle 1. The technical advancement to overcome Obstacle 1 and complete 169	
a breeding cycle in one year would entail some combination of the following: 170	

1. Methods to enhance the growth rate of the GPs so that GPs sampled in the 171	
spring have sufficient biomass to make crosses in the fall; or 172	

2. Methods to make crosses that require less GP biomass but that 173	
nevertheless produce plots with adequate numbers of SPs.  174	

Currently, we are limited to making no more than 400 crosses per year, due to the 175	
labor intensity of maintaining and growing GP cultures in the lab. This bottleneck limits 176	
the number of crosses that can be planted and evaluated and represents Obstacle 2. 177	
Limiting the number of crosses and associated phenotypic variance can reduce the 178	
expected selection intensity and genetic gain. Overcoming Obstacle 2 would require the 179	
ability to maintain and culture more GPs in the lab. 180	

Though we can successfully phenotype and rank SPs after a growing season, we 181	
have minimal ability to exert positive selection on them since many of the top ranked SPs 182	
did not become reproductive prior to harvest. Consequently, our selection of SPs as 183	
parents for the next generation of GPs is limited. The lack of selection pressure 184	
applicable to SPs represents Obstacle 3. The biphasic nature of kelp should enable two 185	
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selection events per breeding cycle, one event on the SPs and one on the GPs they 186	
produce. In the absence of selection on the SPs, we currently miss an opportunity for 187	
genetic gain. Overcoming Obstacle 3 would entail rapid identification of top SPs, and 188	
artificial laboratory induction of SPs to enter reproductive phase (Pang and Luning, 189	
2004). 190	

Finally, we have shown that it is possible to automate isolating meiospores 191	
individually into 96-well plates using flow cytometry (Augyte et al. 2020). This sorting 192	
method showed a maximum effectiveness of 76% in gametophyte development (Augyte 193	
et al. 2020). We considered the average value in gametophyte survival (i.e., 24 GPs per 194	
plate) as a reference parameter in our breeding program. Low GP survival during flow 195	
cytometry represents Obstacle 4. Investment in the flow cytometry method to either 196	
increase GP survival or enable the preparation of more plates, thus generating more GPs 197	
from which to select, would overcome this fourth obstacle. 198	

Using simulation, we aim to compare genetic gain after 5 cycles, examining the 199	
impacts of overcoming the aforementioned obstacles. This study will guide our decision-200	
making to optimize resource allocation in the next phase of research, and allow other kelp 201	
breeders to focus on advancing these areas most needed. 202	

Simulation studies have been a useful tool in assisting breeders’ decision-making. 203	
They are often used to dissect problems that are difficult (expensive or time consuming) 204	
to be addressed experimentally. Simulation models can be used to refine more useful 205	
experiments based on prior results and experience. For instance, in order to evaluate 206	
different ways of improving nitrogen use efficiency for wheat, Dresbøll and Thorup-207	
Kristensen (2014) simulated models mimicking both above and underground plant and 208	
environment interactions as well as effects of crop management strategies. These models 209	
provided useful guidelines for crop management and variety selection. Simulation results 210	
help optimize breeding resource allocation as researchers compare different strategies and 211	
predict the potential effects caused by different variables (Parry et al. 2020, Sun et al. 212	
2011, Yamamoto et al. 2016). Simulation approaches were also used to identify the best 213	
field experimental design in order to most effectively control for spatial variation in 214	
agriculture and forestry studies (Gezan et al. 2010). The selection advantages of GS 215	
versus using phenotypic selection were evaluated using simulation approaches for barley 216	
(based on real marker data, Iwata and Jannink, 2011) and for Cryptomeria japonica 217	
(purely simulated data, Iwata et al. 2011). Hickey et al. (2014) simulated breeding 218	
schemes incorporating GS and assessed GS accuracies to strategize resources allocated 219	
between genotyping versus phenotyping, and between the sizes of populations versus 220	
numbers of replications (Lorenz, 2013). The potential genetic gains for a small young 221	
sorghum breeding program were assessed via simulation (Muleta et al. 2019).   222	

In aquaculture, breeding simulation studies have also been applied to address a 223	
variety of questions (Zenger et al. 2019), including assessing the changes of inbreeding 224	
rates over time (Bentsen and Olesen 2002), evaluating the effects of mating strategies on 225	
the changes of genetic gain in 10 generations of aquaculture selection (Sonesson and 226	
Ødegård, 2016), and assessing the genomic prediction accuracy using either identical by 227	
state or identical by descent genomic relationship matrices (Vela-Avitúa et al. 2015). 228	
Zenger et al. (2019) reported that at least 36 simulation studies were relevant in 229	
aquaculture breeding evaluating different mating designs, selection strategy, family and 230	
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genome sizes, and their effects on changes of breeding program over different 231	
generations. 232	

For simulation studies to be valuable guides, they must be appropriately 233	
parameterized. In our breeding work, we have measured various traits at plot and 234	
individual levels (Umanzor et al. 2020). Heritability using data across two growing 235	
seasons varied among traits and ranged from 0.05 to 0.58, where dry weight per meter 236	
and ash free dry weight heritabilities were approximately 0.4. The percent dry weight had 237	
the lowest heritability of 0.05. Furthermore, population genetic analyses on the wild 238	
samples were performed to understand their diversity, the relationships among them, and 239	
their population history in terms of effective population size (Mao et al. 2020). Our 240	
simulation parameters were chosen on the basis of these heritability values and on 241	
effective population size estimated using founder markers linkage disequilibrium (LD). 242	
In this paper, we present a simulation exercise based on these parameters to prioritize 243	
research to overcome the obstacles limiting optimum gain from selection. 244	
 245	
Materials and Methods 246	
Defining the four major obstacles 247	
 Sampling the kelp sporophytes in the wild and culturing the founder 248	
gametophytes (GPs) was a one-time event and is not counted in the breeding cycle. We 249	
define a breeding cycle for sugar kelp starting in the fall of the year when we cross GPs, 250	
and ending just before we cross GPs for the following year (Fig. 1b). 251	

Obstacle 1 is related to the challenge of cultivating enough biomass from GPs 252	
collected from farm-evaluated sporophytes (SPs) to make new crosses within the same 253	
breeding cycle. In the simulation, we assumed we could reduce the cycle time from two 254	
years to one year. Obstacle 2 is related to limited capacity to grow GPs for crossing. 255	
Simulation scenarios assumed we could design space and labor-saving machines for the 256	
lab/hatchery phase and manage higher throughput phenotyping to evaluate 1000 plots 257	
instead of 400 plots each year. Obstacle 3 is based on the fact that we were not able to 258	
exert selection on farm grown SPs using their phenotypic data because they were not 259	
reproductive and we could not harvest their spores and produce the next generation of 260	
GPs. In our simulation, we assume the top-ranked sporophytes could be artificially 261	
manipulated to be reproductive, hence we could perform phenotypic selection on these 262	
sporophytes rather than applying random selection (Pang and Lüning, 2004). Finally, 263	
Obstacle 4 simply affects how many GPs we can collect per parental SP, with our current 264	
maximum of 24 but a possible maximum of 96. 265	
 266	
Simulation parameters 267	
 268	
1. Founder population characteristics 269	

We first needed an estimate of the effective population size of kelp founders. To 270	
obtain this estimate, marker data on 140 wild SPs samples from GOM was generated via 271	
DArT technology (Mao et al. 2020). Data cleaning was similar to Mao et al. (2020). 272	
Markers were filtered by removing ones with more than 10% missing data and those 273	
severely departing from Hardy-Weinberg Equilibrium (P-value < 0.01) in more than 25% 274	
of the collection sites. Markers with minor allele frequency less than 0.05 and individuals 275	
with more than 50% missing data were also removed. A final set of 4906 markers were 276	
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retained and imputed using the rrBLUP package A.mat function (Endelman et al. 2011) 277	
in R (R Development Core Team, 2018). Linkage disequilibrium between markers was 278	
estimated using the genetics package (Warnes et al, 2012). Average LD score were 279	
estimated to be 0.08, which were then used in estimating the effective sample size (𝑁!), 280	
according to Sved (1971): 281	
 282	

𝐸(𝑟!) ≈
1

1+ 4𝑁!𝑐
 

 283	
where 𝐸(𝑟!) is the expected 𝑟! for which we used the average LD score of 0.08, and c is 284	
the recombination rate among all sites assumed to be 0.5, given that the vast majority of 285	
pairs of sites are on different chromosomes. This gives an estimated 𝑁! = 60. We know 286	
that the GOM population is strongly structured (Mao et al. 2020), which may cause 𝑁! to 287	
be underestimated. Thus we also ran simulations with a setting of 𝑁! = 600. A total of 288	
1000 SP individuals were simulated as our founders with the effective population size of 289	
either 𝑁! = 60 or 𝑁! = 600.  290	
 The ploidy level was set to 2 and the number of chromosomes was assumed to be 291	
31 based on its close congener Saccharina japonica (Liu et al. 2012). Per chromosome, 292	
the number of segregating sites and the number of QTL were set to 500 and 100, 293	
respectively. These values assume that the trait is polygenic but are otherwise somewhat 294	
arbitrary and chosen referring to those in Muleta et al. (2019).  295	
 A mixed model, including genetic effects of SPs as random effects, then growth 296	
line, blocks, date of harvesting, and reference checks as the fixed effects, was conducted 297	
to estimate the narrow sense heritability using 2018-2019 and 2019-2020 two field season 298	
GOM farm SP data. Heritability was estimated using: 299	
    h2=  !!

!

!!
!!!!

! 300	

where 𝜎!! is the estimated additive variance for the SPs and 𝜎!! is error variance from a 301	
mixed model. Trait heritabilities ranged from 0.05 to 0.50 for plot-level traits and 0.06 to 302	
0.58 for individual-level traits using both years' data. In the simulation study, the trait 303	
genotypic variance was set at 1 and error variance at 4 or 1 so that initial heritability was 304	
0.20 or 0.50 for biomass related traits.   305	
 306	
2. Breeding Scheme 307	

Historically, we have been able to produce enough GP biomass to make 2 crosses 308	
per GP. Consequently, we assumed that same capacity in the simulation scheme. We 309	
created initial SP founder populations of 1000 individuals and allowed each SP to 310	
generate two GPs, giving enough GPs to make either 400 or 1000 crosses for downstream 311	
generations without exerting selection pressure on the founder population. The simulation 312	
program randomly assigned “F” and “M” sexes to GPs generated from the founder 313	
population. Ten percent of SPs were selected either randomly or based on phenotype to 314	
be parents of the next generation GPs. Thus, 40 and 100 SPs were selected from 400 and 315	
1000 SPs evaluated, respectively. From these selected SPs, we assumed flow cytometry 316	
would be used to obtain GPs from each SP (Augyte et al. 2020). This automated spore 317	
sorting technology produces viable uni-clonal isolations on average in 25% of the wells 318	
of a 96-well plate (i.e., 24 GPs) from spores released from an individual SP. An ideal 319	
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situation where all 96 GPs in the plate are viable was also included in the simulation 320	
scheme. Generating 96 GPs means there will be four times more GPs to select from to 321	
make crosses for SPs, enabling higher selection intensity. The farm-evaluated SPs 322	
phenotypic data from both years was used to train a genomic selection model which was 323	
used to predict the breeding values of all GPs coming out of the flow cytometry process. 324	
Either 200 or 500 top ranked GPs based on their predicted breeding values would be 325	
selected to make the 400 or 1000 crosses as farm-evaluated SPs plots. Note that with this 326	
scheme, changing the number of SPs evaluated does not change the selection intensity 327	
either during SP or GP selection, whereas changing the number of GPs generated changes 328	
the selection intensity during the GP selection stage. 329	

 330	
3. Estimating Genetic gain over 5 breeding cycles 331	
 Breeding scheme simulation was done using the AlphaSimR package in R (Faux 332	
et al. 2016). Each scheme was simulated 100 times, and the average genetic gain as well 333	
as genetic variance at each GP stage was calculated over 5 cycles of selection. Because 334	
we were mainly interested in evaluating the trend of genetic gain from different breeding 335	
schemes, the reference point for genetic gain could either be for GPs or SPs. We used 336	
GPs. 337	
 338	
Results 339	
 340	
Simulation output  341	

The ability to exert selection on the farm-evaluated SPs (SelectSP), the number of 342	
years per breeding cycle time (CycleTime), and the number of gametophytes per SP 343	
surviving the flow cell cytometry system (nGP) were the three significant contributors to 344	
the changes of genetic mean over time (Table1). We did not observe significant 345	
interactions between these factors (Table 1). 346	

The baseline simulation scheme represented our current state of the art, where 400 347	
SPs are phenotyped in the field, no selection pressure is exerted on the SPs, and the 348	
breeding cycle takes 2 years. Our number of GPs per SP was either 24 or 96. The changes 349	
from Fig. 2a to Fig. 2b reflect the effects of overcoming Obstacle 4 where higher nGP 350	
could be obtained through a single cell sorting flow cytometry step (nGP=24 versus 351	
nGP=96). This change from nGP=24 to nGP=96 led to a gain increase of 37% averaged 352	
across all other factors (nGP, Table 1, Fig. 2). Relative to the baseline, the ability to exert 353	
selection on SPs (Obstacle 3) and decreasing the breeding cycle time (Obstacle 1) led to 354	
gain increases of 101% and 45%, respectively, averaged across all other factors. Though 355	
the effect of increasing the number of plots phenotyped was not statistically significant 356	
(NumPlots, Table 1), numerically this change increased gain by an average of 11% 357	
(overcoming Obstacle 2). We did not observe significant interactions: the effects of 358	
overcoming each obstacle were additive (Table 1), and overcoming all four obstacles led 359	
to the greatest gain (Fig. 2). Heritability also played a role in affecting the genetic gain 360	
(Table 1), where h2=0.5 generated higher genetic mean after 7 years of breeding than 361	
h2=0.2 (Figs. 2a and 2b). This trend was consistent regardless of the number of 362	
gametophytes or effective population size. 363	

The breeding scheme interventions simulated also affected the genetic variance 364	
remaining after seven years of improvement (Fig. 3). All three interventions that 365	
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significantly increased genetic gain also caused decreases in genetic variance. The 366	
smallest change in genetic variance occurred as a result of selecting SPs on phenotype. 367	
Selection causes variance decreases both because of the Bulmer effect and because high 368	
fitness ancestors contribute disproportionately to descendants. With the 1-year per cycle 369	
scheme, the population went through twice as many selection events as with the 2-year 370	
scheme, leading to a greater decrease in genetic variation over the seven years (Fig. 3, 371	
Online Resource 1). For all combinations of other factors, there was a higher final genetic 372	
variance when nGP was 24 than when it was 96. The increased selection intensity from 373	
this intervention caused a greater variance decrease than for any other intervention. The 374	
only intervention that caused increased final genetic variance was evaluating more SP 375	
plots per year (1000 versus 400). In this case, increasing the number of plots caused 376	
increased effective population size and thus greater maintenance of variance. It also 377	
caused increased genomic prediction accuracy, which has also been shown to maintain 378	
genetic variance (Jannink et al. 2010). These effects are depicted in Figure 4. The low 379	
level of interaction between simulated factors can also be seen in Figure 4 by the fact that 380	
lines linking simulation settings with and without the interventions are approximately 381	
parallel and of similar length, indicating that changing one factor has basically the same 382	
effect regardless of the levels of the other factors. 383	

  384	
 385	
Discussion 386	
 387	
Which obstacle should we focus on? 388	
 Simulation is a useful tool for guiding researchers in decision-making especially 389	
for young breeding programs (Muleta et al. 2019) and in assisting selection strategy and 390	
decision-making processes (Zenger et al. 2019). We simulated different breeding 391	
schemes, each overcoming a major obstacle we have encountered in two seasons of kelp 392	
breeding. Assessing which scheme generated the highest genetic gain allows us to 393	
prioritize research directions and derive the most benefit from a limited budget.  394	

The simulation revealed a robust result that the highest genetic gain can be 395	
achieved by exerting selection on SPs phenotypically (overcoming Obstacle 3), and then 396	
by reducing the time for obtaining sufficient GP biomass such that a one-year cycle is 397	
enabled compared to our current two-year cycle (overcoming Obstacle 1). Increasing the 398	
number of viable GP we obtain per parental SP (overcoming Obstacle 4) also delivered 399	
significant gain, while, somewhat surprisingly, phenotyping more SP plots (overcoming 400	
Obstacle 2) did not. These conclusions were not affected by the founder population 401	
effective population size or the trait heritability. Thus, the clear direction to prioritize 402	
breeding enhancement is to induce SP spore release and to modify GP culture to 403	
accelerate growth. In addition, we should experiment with the amount of GP biomass 404	
needed to make sufficient SP progeny. We may not need a full one-meter of line we use 405	
as an evaluation plot.    406	

Developing the ability to induce top performing SPs to release spores (Obstacle 3) 407	
can be a challenge for the following reasons. First, typically only approximately 10% of 408	
the plots are fertile at the optimum time of harvest as measured by most marketable yield. 409	
These crosses are not necessarily the top performing ones. Ideally, we aim to select 410	
crosses in the top 10% for performance and artificially induce them indoors if necessary. 411	
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This has proven successful on a small scale if desirable SPs are identified within a day of 412	
harvest. Overcoming Obstacle 3 requires greater investment in labor to identify and 413	
separate candidate SPs, and investment in culture space.  414	

Our second best option is to accelerate GP growth by overcoming Obstacle 1, 415	
which could also be the hardest task. In brief, it takes four to eight weeks to induce 416	
immature SPs to full maturity and release meiospores under artificial conditions in the lab 417	
(Pang and Lining 2004, Flavin et al. 2013, Remond et al. 2014). Once meiospores are 418	
released, flow-cytometry techniques can be implemented to isolate single-cell 419	
gametophytes into 96-well plates. A second isolation is performed approximately two to 420	
four months later when GPs develop into tufts large enough  (>100 𝞵m), to be sexed and 421	
moved to individual Petri dishes for filament fragmentation. Once sufficient uniclonal 422	
biomass is achieved (~10 mg to cover 1 m plots), which can take up to another four 423	
months, crosses are made by mixing female and male GPs at a 2:1 ratio (Umanzor et al. 424	
2020, Fig. 1). Outplanting at sea occurs 4-6 weeks following SP attachment onto the seed 425	
string (Flavin et al. 2013, Remond et al. 2014). Overall, this process of uniclonal GP 426	
isolation, growth and crossing is effective but typically requires 12 months, in contrast to 427	
the six months between optimal kelp harvesting (end of May to early June) to crossing 428	
and outplanting (November to December).  429	

Possible means of accelerating GP growth include optimizing lighting, nutrient 430	
and temperature regimes, as well as novel biomass fragmentation protocols. It might be 431	
possible to optimize GP biomass development by transferring them earlier to plates with 432	
bigger wells (i.e. from 96-well plates to 24-well plates) that would allow better light 433	
penetration. Generally, GP growth is limited by the natural biological programming of 434	
cell division and a propensity to self-shade in its puff-ball growth form. However, some 435	
GPs grow faster than others, and selecting for GP growth performance could be 436	
incorporated in the breeding program. In order to test and see if 1-year cycle time is 437	
feasible in our current breeding program (approximately six months between GP isolation 438	
and crossing), we are experimenting with using a minimum amount of biomass to make 439	
crosses and generate at least a single SP blade. The function of this blade would not be 440	
for evaluation of SP performance but for recombining the best GPs in the hope of getting 441	
improved recombinants. The approach will generate phenotypic data on the individual SP 442	
but not on biomass per meter of line, which is a plot-level trait. Hence this procedure 443	
would not be a full representation of the simulated 1-year per cycle scheme. Nonetheless, 444	
this will be a proof of concept for us to accelerate the GP culturing process. 445	

Another possibility that is used in forage breeding (Resende et al. 2013) would be 446	
to evaluate segregating plots, in our case created from crossing multiple female GPs from 447	
one SP with multiple male GPs from another SP. The between plots variance for such 448	
mixed plots would be less than that for the uniform SPs plots. Furthermore, maintaining 449	
multiple individual GPs only until they can be sexed and co-cultured together would 450	
reduce some labor. Such mixed plots would generate sufficient biomass more quickly to 451	
facilitate one-year breeding cycles. 452	

Overcoming Obstacle 2 by increasing the number of GPs per parental SP can 453	
potentially be done easily. A simple approach would be to increase the number of plates 454	
automatically sorted by flow cytometry per parental SP, which would increase the 455	
number of GPs in the genomic selection step, allowing higher selection intensity. 456	
Nonetheless, this would result in increasing the number of cultures to maintain in the lab, 457	
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which leads to more labor and cost. The use of flow cytometry sorting expedites the 458	
initial isolation process but the parameters determine the survival of spores is not well 459	
understood. The condition of sorus tissue prior to spore release and sorting likely has an 460	
effect on spore viability. Percentage viability varied across samples presumably because 461	
of differences in sorus tissue condition and handling prior to sorting (Augyte et al, 2020). 462	
An issue that should be investigated is whether the selection pressure caused by flow 463	
cytometry mortality has pleiotropic effects that might negatively affect SP growth or 464	
reproduction. If not, the mortality should generate its own natural selection response that 465	
will eventually mitigate this obstacle.  466	

Increasing the number of plots (from 400 to 1000) could be accomplished without 467	
new research, but could be costly since it would require more GP grow out space and 468	
labor. This change generated only a small increase in the rate of genetic gain. An 469	
additional benefit to increasing the number of SPs being phenotyped, however, was that it 470	
maintained genetic diversity and slowed down the decrease of genetic variance (Fig. 3, 471	
Fig. 4). The proportion of GPs selected out of SPs were the same regardless of testing 472	
400 or 1000 plots, hence increasing the number of plots did not change the selection 473	
differential. It did, however, affect the training population size of GS models when 474	
selecting new generations of GPs. Larger training population size usually contributes to 475	
increased GS accuracy (Poland et al. 2012; Huang et al. 2016). In this case, the increased 476	
phenotypic data led to an improved genomic prediction model and its ability to 477	
distinguish among-family versus within family effects. That ability can decrease the co-478	
selection of relatives leading to greater maintenance of genetic variation (Jannink et al. 479	
2010). Interestingly, every intervention that led to greater genetic gain also led to greater 480	
loss of genetic variance for all changes in practice (Selection on SP, Cycle Time, nGP per 481	
parental SP), except increasing the number of phenotyped plots which had both increased 482	
gain and decreased variance lost (Fig. 4). We also observed in some cases that the 483	
principal effect of increasing the number of plots was to cause greater variance to be 484	
retained, without increasing the gain from selection substantially (in Fig. 4 the gray lines 485	
were close to vertical). Hence, it seems likely that this intervention would benefit our 486	
breeding program over the long term.  487	

While in this discussion we have treated heritability as fixed, that is not strictly 488	
true. Heritability might be increased if we could improve our planting technique to ensure 489	
that plots are more uniformly covered by SPs, so that we obtain successful and uniform 490	
growth of SPs in the field. Not surprisingly, higher heritability leads to greater final gain 491	
(Figs. 2 and 3). The decreasing trend of genetic variance was expected leading to a 492	
relationship where higher final genetic gain coincided with lower genetic variance. It is 493	
important to maintain the diversity while we improve the progeny performance (Heffner 494	
et al. 2009; Lin et al. 2016). Overall, the robustness of these simulation findings should 495	
give us confidence in the research directions they suggest. We believe that these priorities 496	
will greatly help accelerate genetic gain in breeding programs and therefore increase the 497	
value of kelp farming in the United States and globally.  498	
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Tables and Figure legends 
 
Table 1. ANOVA on genetic mean split by founder effective population size (Ne) and heritability 
(h2). 
 
a. Ne = 60, h2 = 0.5 
 Df Sum Sq Mean Sq F P-value 
SelectSP† 1 47.6 47.6 22.4 7.34E-06*** 
NumPlots 1 1.0 1.0 0.5 0.496 
CycleTime 1 13.7 13.7 6.4 0.013* 
nGP 1 10.0 10.0 4.7 0.032* 
SelectSP:NumPlots 1 0.0 0.0 0.0 0.927 
SelectSP:CycleTime 1 0.5 0.5 0.3 0.613 
SelectSP:nGP 1 0.4 0.4 0.2 0.648 
NumPlots:CycleTime 1 0.1 0.1 0.0 0.876 
NumPlots:nGP 1 0.1 0.1 0.0 0.830 
CycleTime:nGP 1 0.4 0.4 0.2 0.663 
Residuals 101 215.0 2.1   

 
b. Ne = 600, h2 = 0.5 
 Df Sum Sq Mean Sq F P-value 
SelectSP† 1 48.5 48.5 31.1 2.02E-07*** 
NumPlots 1 0.4 0.4 0.3 0.614 
CycleTime 1 10.8 10.8 6.9 0.010** 
nGP 1 6.9 6.9 4.4 0.038* 
SelectSP:NumPlots 1 0.0 0.0 0.0 0.897 
SelectSP:CycleTime 1 0.4 0.4 0.3 0.610 
SelectSP:nGP 1 0.4 0.4 0.3 0.614 
NumPlots:CycleTime 1 0.0 0.0 0.0 0.902 
NumPlots:nGP 1 0.1 0.1 0.0 0.838 
CycleTime:nGP 1 0.3 0.3 0.2 0.666 
Residuals 101 157.2 1.6   

 
c. Ne = 60, h2 = 0.2 
 Df Sum Sq Mean Sq F P-value 
SelectSP† 1 19.3 19.3 15.4 0.000*** 
NumPlots 1 1.2 1.2 0.9 0.339 
CycleTime 1 8.1 8.1 6.5 0.012* 
nGP 1 6.7 6.7 5.3 0.023* 
SelectSP:NumPlots 1 0.0 0.0 0.0 0.967 
SelectSP:CycleTime 1 0.2 0.2 0.1 0.726 
SelectSP:nGP 1 0.2 0.2 0.2 0.660 
NumPlots:CycleTime 1 0.0 0.0 0.0 0.849 
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NumPlots:nGP 1 0.1 0.1 0.1 0.733 
CycleTime:nGP 1 0.2 0.2 0.2 0.676 
Residuals 101 126.6 1.3   

 
d. Ne = 600, h2 = 0.2 
 Df Sum Sq Mean Sq F P-value 
SelectSP† 1 19.4 19.4 21.4 1.11E-05*** 
NumPlots 1 0.4 0.4 0.5 0.486 
CycleTime 1 6.8 6.8 7.6 0.007** 
nGP 1 4.3 4.3 4.7 0.032* 
SelectSP:NumPlots 1 0.0 0.0 0.0 0.897 
SelectSP:CycleTime 1 0.3 0.3 0.3 0.599 
SelectSP:nGP 1 0.1 0.1 0.2 0.691 
NumPlots:CycleTim
e 1 0.0 0.0 0.0 0.827 
NumPlots:nGP 1 0.1 0.1 0.1 0.769 
CycleTime:nGP 1 0.1 0.1 0.1 0.726 
Residuals 101 91.4 0.9   

* P<0.05,** P<0.001, *** P<0.0001 
† SelectSP: Selection among SP based on phenotype or at random. NumPlots: Common garden of 400 
versus 1000 field plots. CycleTime: 1-year versus 2-year cycle. nGP: number of GPs obtained per 
parental SP of 24 or 96.  
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Figure 1.  
(a.) Biphasic life cycle and breeding pipeline of sugar kelp (S. latissima) in our research project. 
Represented are meiospore release, flow cell sorting to 96-well plates, propagation to sufficient 
biomass for crossing, spraying of crossed SPs onto seed string, and outplanting to a farm-like 
common garden field experiment. 
(b.) Breeding scheme timeline view and the corresponding obstacles on number of GPs (nGP), 
Number of SP plots evaluated on farm (NumPlots), the selection on SPs (phenotypic vs random 
selection), and CycleTime (1-year vs 2-year). 
 
Figure 2. 
Genetic mean from different breeding schemes over 7 years. The routine breeding scheme starts 
in year 3. Each figure shows NumPlots: Evaluate 400 versus 1000 plots; SelectSP: 
phenotypically select the best (pheno) versus random (rand) sporophytes for producing new 
crosses; and CycleTime: 1-year (1yr) versus 2-year (2yr). Subpanels separate different founder 
population effective population sizes of 60 (Ne60) and 600 (Ne600) and trait heritabilities of h2 
=0.5 and h2 =0.2 when a.) 24 or b.) 96 gametophytes were propagated from each parental SP. 
Each scheme was repeated 100 times and genetic values shown were averages. The standard 
error was smaller than the figure symbols and is not shown.  
 
Figure 3. 
Change of genetic variance from different breeding schemes over 7 years for a.) 24 or b.) 96 
gametophytes per parental sporophyte. The scheme abbreviations are the same as for Figure 2. 
Each scheme was repeated 100 times and genetic variance shown was the average. The standard 
error was smaller than the figure symbols and is not shown.  
 
Figure 4 
Four views of the simulation results on the final genetic variance and genetic mean. Each view 
presents the same scatterplot, with each point representing the mean outcome of 100 simulations 
of one scheme. Each view shows a different obstacle to overcome, with the color of the point 
determined by the current practice (black) or the improved practice (red). Gray lines connect 
simulation schemes that are identical except for this change in practice. 
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Figure 1 
a. 
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b. 
 

	  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2021. ; https://doi.org/10.1101/2021.01.21.427651doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427651
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2. 
a. 

 
b. 
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Figure 3 
a. 

 
b. 
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Figure 4 
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