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The realization that vegetated coastal habitats support 
globally relevant rates of organic carbon burial that rank 
amongst the highest in the biosphere1 led to the develop­

ment of strategies to mitigate climate change through the con­
servation and restoration of seagrass, mangrove and saltmarsh 
habitats, termed blue carbon strategies2–5. Macroalgae, the most 
productive marine macrophytes on a global scale6,7, have been 
excluded from such blue carbon assessments as most macro­
algae grow on rocks, where burial is precluded2,4,8. However, some 
macroalgae grow on sandy sediments9, with burial averaging 0.4% 
of net primary production7. More importantly, macroalgae export 
about 43% of their production7 both as particulate organic car­
bon (POC)10,11 and dissolved organic carbon (DOC)8,12–14. Some 
of this carbon may reach depositional areas and be sequestered in 
sediments, or reach the deep sea, where the carbon is locked away 
from exchange with the atmosphere. Macroalgae can thereby act 
as carbon donors to sink reservoirs located elsewhere6,8 and it has 
recently been argued that they should be included in blue car­
bon assessments8,15–17. However, the evidence required to estimate 
their contribution has been published under a range of research 
fields. For instance, macroalgal export has been studied because 
of its consequences for the dispersal of species and genes18,19, 
the relocation of rocks across the seafloor20, connectivity among 
habitats and the stimulation of secondary production in adjacent 
and distant habitats10,11, including the supply of food to deep-sea 
fauna21 and carbonate to the deep sea22.

Sequestration of macroalgal carbon in marine sediments
Macroalgae may have contributed to carbon sequestration for 
over 2.1  billion  years, based on the oldest dating of a multi­
cellular organism, Grypania  spiralis, which is suggested to be 
a macroalga23. They have certainly done so through the past 
500  million  years, as macroalgae have been reported to be the 
source of a number of oil deposits24,25. One of the prerequisites 
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for macroalgae to contribute to CO2 sequestration, that is, for 
their carbon be sequestered over centennial timescales, is thereby 
amply fulfilled.

Reports of the presence of macroalgal carbon in marine sedi­
ments are relatively few, but suggest that macroalgal carbon may 
be widespread, extending from shallow to deep-sea sediments 
and from polar to tropical regions, as well as across a broad 
range of depths into the sediment, from surface and subsurface 
layers down to deeper than a hundred metres into the sediment 
(Fig.  1, Supplementary Table 1). Macroalgal carbon is typically 
identified in depositional environments10,11,26, including anoxic 
basins, submarine canyons, sedimentation areas within complex 
rocky shores and the deep sea (Fig.  1, Supplementary Table 1). 
Macroalgal-specific markers such as stable carbon isotopes cou­
pled with lipids, sterols and carotenoids have been used to trace 
the contribution of macroalgae to sediments9,27 and food webs26. 
The preservation potential of macroalgal carbon in sediments 
depends on the lability of the organic carbon, which varies 
between species17.

Export of macroalgal carbon to the deep sea
Multiple reports, including the presence of fresh Sargassum in 
the guts of abyssal isopods21, confirm the prevalent presence of 
macroalgal drift on the deep seafloor down to 6,475  m (Fig.  1, 
Supplementary Table 1). These reports are dominated by obser­
vations of brown algae, with abundant reports of Sargassum from 
subtropical latitudes, kelps in the temperate zone and kelps and 
Desmarestiales in the polar regions (Fig. 1, Supplementary Table 1). 
Macroalgal drift also appears to be particularly abundant on the 
discharge area of submarine canyons (Supplementary Table 1). 
Such canyons are widespread across all oceans (660 major canyons 
have so far been documented28) and are important conduits that 
focus the export of materials, including macroalgal carbon (Fig. 2), 
from the continental shelf to the deep sea29. For instance, more 
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than 130,000 t of kelp is exported yearly through the canyon adja­
cent to the Monterey Peninsula30. In addition to observations of 
macroalgae on deep-sea sediments, sinking algal fragments have 
often been collected in open ocean pelagic sediment traps at depths 
of up to 1900  m (Fig.  1, Supplementary Table 1). This suggests 
two modes of transport: bed-load transport of drift material and 
sinking fluxes of negatively buoyant macroalgal detritus31 (Fig. 2).

Through shedding of old fronds, kelps support a continuous 
flux of export material. The substantial drag of large kelps leads 
to detachment from the substrate during high-energy events as 
well as removal by moderate swells10,32. The gas vesicles char­
acteristic of many brown algae (pneumatocysts, Fig.  2) favour 
the formation and long-distance drift of floating aggregates of 
macroalgae18,19. This ability to drift, in combination with their 
relative unpalatability due to phenols and refractory carbon com­
pounds such as fucoidan17, explain their prevalent role as carbon 
source in deep sediments (Figs 1 and 2, Supplementary Table 1). 
Detached macroalgal tissue is transported offshore by currents, 
which support long-range export (Fig. 2). For instance, a 588 km2 
patch of detached brown algae, Colpomenia sp., organized into 
windrows by wind-driven Langmuir circulation, was reported off 
the Great Bahamas Bank33. Drifting rafts of giant kelp may occur 
at very high densities, with 39,000 to 348,000 rafts identified in 
the Southern California Bight alone, exporting the kelp more 
than 300  km offshore34. Drifting surface mats of Sargassum are 
also abundant22,35,36.

A number of mechanisms have been identified for the deliv­
ery of drifting macroalgae to marine sediments. Wind-induced 
Langmuir circulation can entrain floating macroalgal fragments 
at depth, where pressure can collapse their gas vesicles, rendering 
the macroalgae negatively buoyant and removing them from the 
neuston (Fig. 2). For instance, the gas vesicles of Sargassum have 
been found to collapse in 5 h under a pressure of only 30 dbar, 
although those of the Sargasso Sea Sargassum seem to be more 
resistant37. Another delivery mechanism is the ballasting of float­
ing macroalgae by the stones dislodged by excessive drag forces 
(Fig.  2) — a phenomenon of global geological relevance that 

results in deep-sea soft sediment plains being paved with stones20. 
The growth of calcifiers on macroalgal surfaces can also add to 
their density and contribute to their subsequent sinking22.

The offshore export of macroalgal fragments from the coastal 
zone fuels a potentially large flux of macroalgal carbon to the deep 
sea: there are reports of 16.5 gC m–2 d–1 of giant kelp being exported 
through the Carmel Canyon, California38, and of 0.4 gC m–2 yr–1 
of Sargassum reaching 3,600 m depth in the Northwest Atlantic35. 
These fluxes can also be highly episodic, such as the estimated 
input in excess of 7 × 1010 gC potentially reaching the seafloor at 
1800 m depth off the Bahaman shelf 33 during a storm.

Global carbon sequestration by macroalgae
Macroalgae are the dominant primary producers in the 
coastal zone1,6 with a global net primary production (NPP) of 
1,521 TgC yr–1 (range: 1,020–1,960 TgC yr–1; Fig. 3) over an esti­
mated area of 3.5  million  km2 (range: 2.8–4.3  million  km2; see 
Tables 1 and 2). There are few studies that document the fate of 
NPP and export to the deep sea, but they do help to provide a 
first-order estimate of the contribution of macroalgae to car­
bon sequestration from burial in coastal sediments and export 
to the deep sea (defined as >1,000  m depth), where the car­
bon is precluded from exchanging with the atmosphere over 
extended timescales even after being remineralized (Fig. 3). We 
combine existing information on the fate of macroalgal carbon 
(Table  1) and propagate uncertainties through the calculations 
using a Monte Carlo approach (see Methods, Tables 1 and 2) to 
derive this crude estimate of the contribution of macroalgae to 
carbon sequestration.

On average, about 0.4% of macroalgal NPP is buried directly 
in the habitat7 for macroalgae that grow on soft sediments (a 
mean of 6.2  TgC  yr–1, Fig.  3). An estimated 43% of macroalgal 
NPP is exported, supporting a global flux of about 679 TgC yr–1 
(Fig.  3). We estimated the fraction exported as DOC by com­
bining the mean area-specific estimate of macroalgal DOC 
release (101 gC m–2 yr–1)12 with the estimated global macroalgal 
area (Tables 1 and 2), yielding 355 TgC yr–1 or 52% of the total 
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Figure 1 | Map of the locations where macroalgal carbon storage has been reported. The types of macroalgae are indicated for observations 
from sediment traps that are in the water column, on the sediment surface and buried in sediments. Inset, the frequency distribution of the 
water depths of macroalgae observations, with the majority representing the deep sea (<1,000 m). All references of observations are available in 
Supplementary Table 1.
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export (Fig. 3). The remaining export (48%, 323 TgC yr−1) is in 
particulate form (Fig. 3, Tables 1 and 2). 

We estimate that 33% of the DOC flux (117  TgC  yr−1) is 
exported below the mixed layer, representing an upper boundary 
for the amount of macroalgal DOC reaching the deep sea (Fig. 3). 
This value is supported both by the finding that the net oceanic 
primary production (approximately 50 PgC yr–1), of which about 
13% (that is, 6.5 PgC yr–1) is released as DOC, results in a down­
ward DOC export of 2 PgC yr–1 (approximately 30%) below the 
mixed layer (details in Table 1) and the large inputs of DOC from 
ocean margins to the ocean interior39. We assume that the same 
fraction of macroalgal DOC is exported below the mixed layer 
and potentially reaches the deep sea (Table 1).

Regarding the fate of macroalgal POC export, three independ­
ent studies suggest that about 11% (35 TgC yr–1) reaches the deep 
sea. One study reports that around 10% of drift Sargassum reaches 
the deep seafloor as particulate material35, a second reports that 
approximately 3% of NPP31 (that is, equivalent to around 10% 
of the POC export) reaches the deep seafloor as phytodetritus 
and a third work finds that around 13% of drift kelp is exported 
through canyons (an average of two surveys before hurricane40) 

(Fig.  3, Table  1). The remaining 89% of the export POC flux is 
assumed to stay in the coastal ocean. Of this fraction, an estimated 
4.6% (14 TgC yr–1) is buried in shelf sediments41 (Fig. 3, Tables 1 
and 2) and we assume that the rest (95.4%) is mineralized.

Together these findings yield a first-order estimate of the 
contribution of macroalgae to carbon sequestration of about 
173  TgC  yr–1 (range: 61–268  TgC  yr–1), of which about 88% is 
sequestered in the deep sea (Fig.  3). This estimate exceeds 
that for carbon buried in angiosperm-based coastal habitats 
(111–131 TgC yr–1)1 and provides evidence of the importance of 
macroalgae in biological CO2 sequestration. However, the range 
around this estimate varies by an order of magnitude, highlight­
ing the need for targeted efforts to address the main sources of 
this uncertainty, which include the area covered by macroalgae, 
the amount of macroalgal-derived carbon that is sequestered in 
sediments and the fate of macroalgal-derived DOC exported 
from the mixed layer.

An assessment of the potential changes in the global rates of 
CO2 sequestration of macroalgae requires a global evaluation of 
the trends and drivers of this sequestration, which, unlike those 
of seagrasses, mangroves and salt-marshes4, has not yet been 
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attempted. Climate change leads to the loss of kelp forests near 
their southern distribution limit42,43, but may favour their pole­
ward expansion into the Arctic44,45 and may change macroalgal 
NPP and detrital export in the future46. Other global drivers of 
change47, including eutrophication48 and the growing macroalgal 
harvest and aquaculture industry49,50, may also influence the 

contribution of macroalgae to carbon sequestration by affect­
ing the future area of macroalgal growth and production. Such 
changes in the sequestration of macroalgal carbon should be 
monitored and macroalgae should be considered both in carbon 
accounting reports and within blue carbon conservation and 
restoration strategies to mitigate climate change.

Table 1 | Details of the data used in the uncertainty propagation analysis.

Variable Minimum Maximum Mean Standard deviation
Global macroalgae area (million km2) 1.4* 5.7† 3.54‡ 1.06‡

NPP (gC m–2 yr–1) 91§ 750|| 420‡ 165‡

Global NPP (TgC yr–1) - - 1521¶ 732¶

Percentage of NPP buried in algal beds - - 0.4# 0.54#

Percentage of NPP exported from algal beds - - 43.5# 48#

DOC exported from algal beds (gC m–2 yr–1) - - 101* 55*
Percentage of DOC exported below the mixed layer - - 30** 9**
POC exported from algal beds (TgC yr–1) - - 323†† 907††

Percentage of POC exported to the deep sea - - 11‡‡ 1.7‡‡

POC export retained in the shelf environment (TgC yr–1) - - 288§§ 808§§

POC buried in shelf sediments (gC m–2 yr–1) - - 4.65|||| 2.47||||

*From ref. 1, recalculated from the total macrophyte area in ref. 51 (which is based on ref. 52) by subtracting the 0.6 million km2 that corresponds to seagrass beds †Ref. 53 combined estimates of underwater 
light penetration, global bathymetry and the light requirements of macroalgae to estimate the potential area available for macroalgae to be 5.7 million km2. ‡The midpoint of the range (minimum–maximum) 
is assumed to be the mean; the range is assumed to span two standard deviations. §Ref. 54 (based on literature data) provides an NPP value for macroalgae of 365 g DW m–2 yr–1 (DW, dryweight); given 
a 25% C content of DW for macroalgae55 this corresponds to 91 gC m–2 yr–1. ||Estimate from ref. 56 on the basis of a literature review. ¶Propagated by combining ‡ and §. #From the mean and standard error 
reported in ref. 7, for n = 30, where n is the number of observations. *From the mean and standard deviation reported in ref. 12. This value is multiplied by the global area of macroalgae to estimate the total 
DOC export from macroalgae through the error propagation analysis. **This mean estimate is supported by the finding that the net oceanic primary production (around 50 PgC yr–1), of which about 13%57 
(that is, 6.5 PgC yr–1) is released as DOC, supplies a downward DOC export of 2 PgC yr–1 (approximately 30%) below the mixed layer (fig. 6.1 in ref. 58). We assume that the same fraction of macroalgal DOC 
is exported below the mixed layer and potentially reaches the deep sea. Where no estimate of error is available, we assumed that the standard deviation must be at least 30% of the mean (that is, 9%). 
††Calculated as the total export − DOC export through the uncertainty analysis. ‡‡The mean and standard error of three independent studies31,35,40. §§Calculated as total POC export − POC exported to the deep 
sea through the uncertainty analysis. ||||Calculated from two experiments reported in ref. 59.

Table 2 | Distribution of values originating from the uncertainty analysis.

Variable Macroalgal area 
(million km2)

Primary production 
(gC m–2 yr–1)

Global production 
(PgC yr–1)

Burial in algal bed 
(PgC yr–1)

Burial in algal bed 
(PgC yr–1)

DOC export 
(PgC yr–1)

Quantiles
Maximum 7.31 998 4.778 0.0456 5.001 1.507
75% 4.28 535 1.960 0.0113 1.155 0.486
50% 3.51 430 1.419 0.0051 0.571 0.330
25% 2.80 322 1.020 0.0002 0.099 0.194
Minimum 0.52 -77 -0.295 -0.042 -2.685 -0.316
Sum. stats.
Mean 3.54 430 1.521 0.0062 0.679 0.355
s.d. 1.06 157 0.732 0.0094 0.887 0.229
s.e. 0.03 5 0.023 0.0003 0.028 0.007
Variable POC export 

(PgC yr–1)
DOC export below 
mixed (PgC yr–1)

POC deep sea 
(PgC yr–1)

POC export to shelf 
(PgC yr–1)

POC burial in shelf 
(PgC yr–1)

Total C sequestr. 
(PgC yr–1)

Quantiles
Maximum 4.517 0.456 0.466 4.098 0.249 0.899
75% 0.787 0.194 0.085 0.705 0.031 0.268
50% 0.237 0.113 0.026 0.210 0.006 0.155
25% -0.229 0.036 -0.025 -0.204 -0.007 0.061
Minimum -3.631 -0.197 -0.392 -3.239 -0.217 -0.455
Sum stats.
Mean 0.323 0.117 0.035 0.288 0.014 0.173
s.d. 0.907 0.115 0.100 0.808 0.044 0.172
s.e. 0.029 0.004 0.003 0.026 0.001 0.005

The different variables reflect the flux in macroalgal production (Fig. 3) from the uncertainty analysis (conducted using 1,000 simulations; n = 1000). The uncertainty in the area and NPP per unit area were 
combined to generate the uncertainty in the global NPP. See Table 1 for details of the uncertainty analysis. The uncertainty is represented in Fig. 3 as the 50% interquartile range (that is, 25% and 75% 
quartiles) of the propagated values. Sum. stats., summary statistics; s.d., standard deviation; s.e., standard error.
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Methods 
Methods, including statements of data availability and any 
associated accession codes and references, are available in the 
online version of this paper.
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Methods
Estimates of the uncertainty in the global net primary production of macroalgae and 
its fate required the mean and range for the macroalgal carbon sequestered annually 
either in sediments or the deep sea to be calculated. An uncertainty propagation 
analysis was then undertaken using Monte Carlo simulations. For each component 
of the global net primary production of macroalgae and its fate, 1,000 randomly gen­
erated values were obtained by sampling randomly from a normal distribution with 
the corresponding mean and standard deviation (Table 1). Individual estimates were 
calculated by combining each of the 1,000 simulated values, thereby yielding 1,000 

estimates for each step in the calculations that combined all of the uncertainties from 
the terms entering these calculations (Table 1). We then retrieved the mean from 
the 1,000 estimates of macroalgal production, which is generated by combining the 
uncertainties in the area covered globally and the NPP per unit area (Table 1) and 
carbon flux, and characterized the uncertainty by the central 50% interquartile range 
of the values (that is, the 25% to 75% quartiles of the values generated; Table 2).

Data availability. The data that support the findings of this study are available 
within the text and Supplementary Information.
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